154
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A coordinated control scheme for VSC-MTDC system with multiple renewable energy sites based on voltage margin and adaptive drooping control

, , , , , & show all
Pages 1658-1674 | Received 15 May 2022, Accepted 05 Jun 2023, Published online: 26 Jun 2023

References

  • Cheng, Z. P., Wang, Y. F., Li, Z. W., & Gao, J. F. (2019). DC voltage margin adaptive droop control strategy of VSC-MTDC systems. The Journal of Engineering, 2019(16), 1783–1787. https://doi.org/10.1049/joe.2018.8695
  • Dierckxsens, C., Srivastava, K., Reza, M., Cole, S., Beerten, J., & Belmans, R. (2012). A distributed DC voltage control method for VSC MTDC systems. Electric Power Systems Research, 82(1), 54–58. https://doi.org/10.1016/j.epsr.2011.08.006
  • Gunnar, A., Kestin, L., & Carl, B. (2013). HVDC grid feasibility study. Working Group B4-52.
  • Kim, S. K. (2019). Performance recovery output voltage control algorithm for AC/DC converter. International Journal of Control, 92(5), 987–1000. https://doi.org/10.1080/00207179.2017.1378440
  • Li, B., Li, Q., Wang, Y., Wen, W., Li, B., & Xu, L. (2020). A novel method to determine droop coefficients of DC voltage control for VSC-MTDC system. IEEE Transactions on Power Delivery, 35(5), 2196–2211. https://doi.org/10.1109/TPWRD.2019.2963447
  • Li, G., Du, Z., Shen, C., Yuan, Z., & Wu, G. (2018). Coordinated design of droop control in MTDC grid based on model predictive control. IEEE Transactions on Power Systems, 33(3), 2816–2828. https://doi.org/10.1109/TPWRS.2017.2764112
  • Li, X., Guo, L., Hong, C., Zhang, Y., Li, Y. W., & Wang, C. (2018). Hierarchical control of multiterminal DC grids for large-scale renewable energy integration. IEEE Transactions on Sustainable Energy, 9(3), 1448–1457. https://doi.org/10.1109/TSTE.2018.2789465
  • Li, Z., Li, Y., Zhan, R., He, Y., & Zhang, X. P. (2019). AC grids characteristics oriented multi-point voltage coordinated control strategy for VSC-MTDC. IEEE Access, 7(c), 7728–7736. https://doi.org/10.1109/ACCESS.2018.2890406
  • Lin, S., Mu, D., Wang, L., & Liu, L. (2019). Coordinated power control strategy of voltage source converter-based multiterminal high-voltage direct current based on the voltage-current curve. IEEJ Transactions on Electrical and Electronic Engineering, 14(6), 844–852. https://doi.org/10.1002/tee.22873
  • Liu, Y., Green, T. I. M. C., & Wu, J. (2019). A new droop coefficient design method for accurate power-sharing in VSC-MTDC systems. IEEE Access, 7, 47605–47614. https://doi.org/10.1109/ACCESS.2019.2909044
  • Mahdian-Dehkordi, N., Namvar, M., Karimi, H., Piya, P., & Karimi-Ghartemani, M. (2017). Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications. International Journal of Control, 90(1), 53–67. https://doi.org/10.1080/00207179.2015.1086026
  • Marinescu, B. (2008). Robustness and coordination in voltage control of large-scale power systems. International Journal of Control, 81(10), 1568–1589. https://doi.org/10.1080/00207170701771877
  • Mei, M., Wang, P., Che, Y., & Xing, C. (2021). Adaptive coordinated control strategy for multi-terminal flexible DC transmission systems with deviation control. Journal of Power Electronics, 21(4), 724–734. https://doi.org/10.1007/s43236-021-00219-7
  • Peña, R. R., Fernández, R. D., Mantz, R. J., & Battaiotto, P. E. (2015). Power-based control with integral action for wind turbines connected to the grid. International Journal of Control, 88(10), 2143–2153. https://doi.org/10.1080/00207179.2015.1039064
  • Prasad, S., Yadav, O., & Kishor, N. (2022). Wind farm dynamic effect mitigation on power sharing and stability of MTDC grid through a supplementary controller. Control Engineering Practice, 123(May 2021), 105152. https://doi.org/10.1016/j.conengprac.2022.105152
  • Prieto-Araujo, E., Bianchi, F. D., Junyent-Ferré, A., & Gomis-Bellmunt, O. (2011). Methodology for droop control dynamic analysis of multiterminal VSC-HVDC grids for offshore wind farms. IEEE Transactions on Power Delivery, 26(4), 2476–2485. https://doi.org/10.1109/TPWRD.2011.2144625
  • Rouzbehi, K., Gavriluta, C., Candela, J. I., Luna, A., & Rodriguez, P. (2013). Comprehensive analogy between conventional AC grids and DC grids characteristics. IECON Proceedings (Industrial Electronics Conference), 2004–2010.
  • Rouzbehi, K., Miranian, A., Luna, A., & Rodriguez, P. (2014). DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(4), 1171–1180. https://doi.org/10.1109/JESTPE.2014.2338738
  • Sayed, S. S., & Massoud, A. M. (2021). A generalized approach for design of contingency versatile DC voltage droop control in multi-terminal HVDC networks. International Journal of Electrical Power & Energy Systems, 126(July 2020), 106413. https://doi.org/10.1016/j.ijepes.2020.106413
  • Shinoda, K., Benchaib, A., Dai, J., & Guillaud, X. (2021). Over- and under-voltage containment reserves for droop-based primary voltage control of MTDC grids. IEEE Transactions on Power Delivery, 8977(c), 1–11. https://doi.org/10.1109/TPWRD.2021.3054183
  • Spallarossa, C. E., Green, T. C., Lin, C., & Wu, X. (2014). A DC voltage control strategy for MMC MTDC grids incorporating multiple master stations. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 3–7.
  • Stamatiou, G., & Bongiorno, M. (2017). Power-dependent droop-based control strategy for multiterminal HVDC transmission grids. IET Generation, Transmission & Distribution.
  • Tang, W., & Lasseter, R. H. (2000). LVDC industrial power distribution system without central control unit. PESC Record - IEEE Annual Power Electronics Specialists Conference, 2(C), 979–984.
  • Wang, W., & Barnes, M. (2014). Power flow algorithms for multi-terminal VSC-HVDC with droop control. IEEE Transactions on Power Systems, 29(4), 1721–1730. https://doi.org/10.1109/TPWRS.2013.2294198
  • Wang, Y., Li, B., Zhou, Z., Chen, Z., Wen, W., Li, X., & Wang, C. (2020). DC voltage deviation-dependent voltage droop control method for VSC-MTDC systems under large disturbances. 891–896.
  • Wang, Y., Wen, W., Wang, C., Liu, H., Zhan, X., & Xiao, X. (2019). Adaptive voltage droop method of multiterminal VSC-HVDC systems for DC voltage deviation and power sharing. IEEE Transactions on Power Delivery, 34(1), 169–176. https://doi.org/10.1109/TPWRD.2018.2844330
  • Wang, Z. D., Li, K. J., Ren, J. G., Sun, L. J., Zhao, J. G., Liang, Y. L., Lee, W. J., Ding, Z. H., & Sun, Y. (2015). A coordination control strategy of voltage-source-converter-based MTDC for offshore wind farms. IEEE Transactions on Industry Applications, 51(4), 2743–2752. https://doi.org/10.1109/TIA.2015.2407325
  • Xiong, Y., Yao, W., Shi, Z., Fang, J., Ai, X., Wen, J., & Cheng, S. j. (2022). Adaptive dual droop control of MTDC integrated offshore wind farms for fast frequency support. IEEE Transactions on Power Systems, 8950(c), 1–13. https://doi.org/10.1109/TPWRS.2022.3179504
  • Yadav, O., Prasad, S., Kishor, N., Negi, R., & Purwar, S. (2020). Controller design for MTDC grid to enhance power sharing and stability. IET Generation, Transmission & Distribution, 14(12), 2323–2332. https://doi.org/10.1049/iet-gtd.2019.0880

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.