114
Views
18
CrossRef citations to date
0
Altmetric
Articles

Effects of tunnelling current on millimetre-wave IMPATT devices

, &
Pages 1429-1456 | Received 16 Nov 2011, Accepted 20 Apr 2014, Published online: 19 Nov 2014

References

  • Acharyya, A., & Banerjee, J. P. (2012a). Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Applied Nanoscience, Springer. Advance online publication. doi:10.1007/s13204-012-0172-y.
  • Acharyya, A., & Banerjee, J. P. (2012b). A comparative study on the effects of tunneling on W-band Si and Si1-xGex based double-drift IMPATT devices. In IEEE international conference on electronics computer technology, Kanyakumari (pp. 29–33).
  • Acharyya, A., & Banerjee, J. P. (2013). Potentiality of IMPATT devices as terahertz source: An avalanche response time based approach to determine the upper cut-off frequency limits. IETE Journal of Research, 59, 118–127. doi:10.4103/0377-2063.113029
  • Acharyya, A., Mukherjee, J., Mukherjee, M., & Banerjee, J. P. (2011). Heat sink design for IMPATT diode sources with different base materials operating at 94 GHz. Archives of Physics Research, 2, 107–126.
  • Acharyya, A., Mukherjee, M., & Banerjee, J. P. (2011a). Studies on the millimeter-wave performance of MITATTs from avalanche transit time phase delay. In IEEE applied electromagnetics conference 2011, Kolkata (pp. 1–4).
  • Acharyya, A., Mukherjee, M., & Banerjee, J. P. (2011b). Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Science and Technology, 4, 26–41.
  • Acharyya, A., Pal, B., & Banerjee, J. P. (2010). Temperature distribution inside semi-infinite heat sinks for IMPATT sources. International Journal of Engineering Science and Technology, 2, 5142–5149.
  • Adlerstein, M. G., Holway, L. H., & Chu, S. L. G. (1983). Measurement of series resistance in IMPATT diodes. IEEE Transactions Electronic Devices, 30, 179–182. doi:10.1109/T-ED.1983.21092
  • Adlerstein, M. G., & Moore, E. (1981). Microwave properties of GaAs IMPATT diodes at 33 GHz. In Proceedings of eighth Biennial conference on active microwave semiconductor devices and circuits (pp. 375–384). Ithaca, NY: Cornell University.
  • Banerjee, J. P., Pati, S. P., & Roy, S. K. (1988). Computer simulation experiment on the mm-wave properties of InP double drift IMPATTs. Physica Status Solidi A Applications and Material Science, 109, 359–364. doi:10.1002/pssa.2211090139
  • Banerjee, S., Acharyya, A., & Banerjee, J. P. (2012), Millimeter-wave and noise properties of Si~Si1-xGex heterojunction double-drift region MITATT devices at 94 GHz. In IEEE conference CODEC 2012, Kolkata (pp. 1–4).
  • Brooker, G. M. (2006). Long-range imaging radar for autonomous navigation (PhD dissertation). University of Sydney, Aerospace, Mechanical and Mechatronic Engineering, Sydney, p. 231.
  • Canali, C., Ottaviani, G., & Quaranta, A. A. (1971). Drift velocity of electrons and holes and associated anisotropic effects in silicon. Journal of Physics and Chemistry of Solids, 32, 1707–1720. doi:10.1016/S0022-3697(71)80137-3
  • Chang, Y., Hellum, J. M., Paul, J. A., & Weller, K. P. (1977, June 21–23). Millimeter-wave IMPATT sources for communication applications. In Proceedings of the IEEE MTT-S international microwave symposium digest, San Diego, CA (pp. 216–219).
  • Chive, M., Constant, E., Lefebvre, M., & Pribetich, J. (1975). Effect of tunneling on high efficiency IMPATT avalanche diode. Proceedings of the IEEE (Letters), 63, 824–826. doi:10.1109/PROC.1975.9838
  • Culshaw, B., & Giblin, R. (1974). Avalanche diode oscillators. International Journal of Electronics, 37, 577–632. doi:10.1080/00207217408900569
  • Dalal, V. L. (1970). Hole velocity in p-GaAs. Applied Physics Letters, 16, 489–491. doi:10.1063/1.1653077
  • Dash, G. N., & Pati, S. P. (1992). A generalized simulation method for MITATT-mode operation and studies on the influence of tunnel current on IMPATT properties. Semiconductor Science and Technology, 7, 222–230. doi:10.1088/0268-1242/7/2/008
  • Electronic Archive: New Semiconductor Materials, Characteristics and Properties (2012). Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
  • Elta, M. E. (1978). The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes (PhD dissertation). Electron Physics Laboratory, University of Michigan, Ann Arbor, MI, Technical Report.
  • Elta, M. E., & Haddad, G. I. (1978). Mixed tunneling and avalanche mechanism in p-n junctions and their effects on microwave transit time devices. IEEE Transactions on Electron Devices, 25, 694–702. doi:10.1109/T-ED.1978.19156
  • Elta, M. E., & Haddad, G. I. (1979a). High-frequency limitations of IMPATT, MITATT, and TUNNETT mode devices. IEEE Transactions on Microwave Theory and Techniques, 27, 442–449. doi:10.1109/TMTT.1979.1129646
  • Elta, M. E., & Haddad, G. I. (1979b). Large-signal performance of microwave transit-time devices in mixed tunneling and avalanche breakdown. IEEE Transactions on Electron Devices, 26, 941–948. doi:10.1109/T-ED.1979.19522
  • Gibbons, G. (1973). Avalanche-diode microwave oscillators (p. 13 and p. 53). Oxford: Oxford University Press.
  • Grant, W. N. (1973). Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid State Electron, 16, 1189–1203. doi:10.1016/0038-1101(73)90147-0
  • Gray, W. W., Kikushima, L., Morentc, N. P., & Wagner, R. J. (1969). Applying IMPATT power sources to modern microwave systems. IEEE Journal of Solid-State Circuits, 4, 409–413. doi:10.1109/JSSC.1969.1050046
  • Gummel, H. K., & Blue, J. L. (1967). A small-signal theory of avalanche noise in IMPATT diodes. IEEE Transactions on Electron Devices, 14, 569–580. doi:10.1109/T-ED.1967.16005
  • Haddad, G. I., Greiling, P. T., & Schroeder, W. E. (1970). Basic principles and properties of avalanche transit time devices. IEEE Transactions on Microwave Theory and Techniques, 18, 752–772. doi:10.1109/TMTT.1970.1127352
  • Houston, P. A., & Evans, A. G. R. (1977). Electron drift velocity in n-GaAs at high electric field. Solid State Electronics, 20, 197–204. doi:10.1016/0038-1101(77)90184-8
  • Kane, E. O. (1961). Theory of tunneling. Journal of Applied Physics, 32, 83–91. doi:10.1063/1.1735965
  • Kurokawa, K. (1969). Some basic characteristics to broadband negative resistance oscillators. Bell Systems Technical Journal, 48, 1937–1955. doi:10.1002/j.1538-7305.1969.tb01158.x
  • Kwok, S. P., & Haddad, G. I. (1972). Effect of tunneling on an IMPATT oscillator. Journal Applied Physics, 43, 3824–3830. doi:10.1063/1.1661818
  • Luy, J.-F., Casel, A., Behr, W., & Kasper, E. (1987). A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Transactions on Electron Devices, 34, 1084–1089. doi:10.1109/T-ED.1987.23049
  • Luy, J.-F., & Kuehnf, R. (1989). Tunneling assisted IMPATT operation. IEEE Transactions on Electron Devices, 36, 589–595. doi:10.1109/16.19971
  • Midford, T. A., & Bernick, R. L. (1979). Millimeter wave CW IMPATT diodes and oscillators. IEEE Transactions on Microwave Theory and Techniques, 27, 483–492. doi:10.1109/TMTT.1979.1129653
  • Misawa, T. (1967). Multiple uniform layer approximation in analysis of negative resistance in p-n junction in breakdown. IEEE Trans Electron Devices, 14, 795–808. doi:10.1109/T-ED.1967.16113
  • Mitra, M., Das, M., Kar, S., & Roy, S. K. (1993). A study of the electrical series resistance of silicon IMPATT diodes. IEEE Transactions Electronic Devices, 40, 1890–1893. doi:10.1109/16.277354
  • Mukherjee, M., Banerjee, S., & Banerjee, J. P. (2010). Dynamic characteristics of III-V and IV-IV semiconductor based transit time devices in the terahertz regime: A comparative analysis. Terahertz Science and Technology, 3, 97–109.
  • Mukherjee, M., & Mazumder, N. (2007, May 21–25). Comparison of photo sensitivity of Si and InP IMPATT diodes at 220 GHz. In Proceedings of the IEEE international conference on microelectronics, electronics and electronic technologies (IEEE-MEET 2007) (pp. 72–77). Croatia: University of Zagreb.
  • Mukherjee, M., & Mazumder, N. (2009). Effect of charge-bump on high-frequency characteristics of α-SiC based double drift ATT diodes at mm-wave window frequencies. IETE Journal of Research, 55, 118–127. doi:10.4103/0377-2063.54899
  • Pal, T. K. (2009). Series resistance of silicon millimeter wave (Ka-band) IMPATT diodes. Defence Science Journal, 59, 189–193. doi:10.14429/dsj.59.1508
  • Pattanaik, S. R., Mishra, J. K., & Dash, G. N. (2011). A new mm-wave GaAs~Ga0.52In0.48P heterojunction IMPATT diode. IETE Journal of Research, 57, 351–356. doi:10.4103/0377-2063.86315
  • Ray, U. C., & Gupta, A. K. (1988). Measurement of electrical series resistance of W-band Si IMPATT diode. In Proceedings of 2nd Asia Pacific Microwave conference (pp. 434–437).
  • Read, W. T. (1958). A proposed high-frequency negative-resistance diode. Bell System Technical Journal, 37, 401–446. doi:10.1002/j.1538-7305.1958.tb01527.x
  • Roy, S. K., Banerjee, J. P., & Pati, S. P. (1985). A computer analysis of the distribution of high frequency negative resistance in the depletion layers of IMPATT diodes. In Proceedings of NASECODE-IV conference on numerical analysis of semiconductor devices (pp. 494). Dublin: Boole Press.
  • Roy, S. K., Sridharan, M., Ghosh, R., & Pal, B. B. (1979). Computer methods for the dc field and carrier current profiles in IMPATT devices starting from the field extremum in the depletion layer. In Proceedings of NASECODE-I conference on numerical analysis of semiconductor devices (pp. 266). Dublin: Boole Press.
  • Sridharan, M., & Roy, S. K. (1978). Computer studies on the widening of the avalanche zone and the decrease in efficiency of silicon X-band symmetrical double-drift IMPATT diodes at high current densities. DDR,’ Electronics Letters, 14, 635–637. doi:10.1049/el:19780427
  • Sridharan, M., & Roy, S. K. (1980). Effect of mobile space-charge on the small-signal admittance of DDR silicon IMPATTs at high current densities. Solid State Electronics, 23, 1001–1003. doi:10.1016/0038-1101(80)90070-2
  • Sze, S. M. (1981). Physics of semiconductor devices (2nd ed.). New York, NY: Wiley.
  • Sze, S. M., & Ryder, R. M. (1971). Microwave avalanche diodes. Proceedings of the IEEE, Special Issue on Microwave Semiconductor Devices, 59, 1140–1154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.