69
Views
0
CrossRef citations to date
0
Altmetric
Articles

Voltage lowering and gain control techniques for a single-supply-driven 0.7 V amplifier

&
Pages 1535-1559 | Received 06 Sep 2013, Accepted 20 Apr 2014, Published online: 02 Dec 2014

References

  • Adabi, E., Heydari, B., Bohsali, M., & Niknejad, A. M. (2007). 30 GHz CMOS low noise amplifier. In Proceedings of the IEEE RFIC symposium (pp. 625–628).
  • Blaakmeer, S. C., Klumperink, E. A., Nauta, B., & Leenaerts, D. W. (2007, September). An inductorless wideband balun-LNA in 65 nm CMOS with balanced output. In Proceedings of 33rd European Solid State Circuits Conference (pp. 364–367).
  • Cao, Y., Issakov, V., & Tiebout, M. (2008, February). A 2 kV ESD-protected 18 GHz LNA with 4 dB NF in 0.13 µm CMOS. In Proceedings of IEEE International Solid-State Circuit Conference Technical Digest (pp. 194–195).
  • Carr, J. (2002). RF components and circuits (1st ed.). Boston, MA: Newnes.
  • Chen, C. C., Yang, H. Y., & Lin, Y. S. (2009). A 21–27 GHz CMOS wideband LNA with gain and group-delay using standard 0.18 µm CMOS technology. In Proceedings of Radio Wireless (RWS) Symposium (pp. 586–589).
  • Chen, W.-L., Chang, S.-F., Huang, G.-W., Jean, Y.-S., & Yeh, T.-H. (2007). A Ku-band interference-rejection CMOS low-noise amplifier using current-reused stacked common-gate topology. IEEE Microwave and Wireless Components Letters, 17(10), 718–720. doi:10.1109/LMWC.2007.905631
  • Chen, Y.-C., Wang, C. H., & Lin, Y.-S. (2012). Low-power 24 GHz CMOS receiver front-end using isolation enhancement technique for automatic radar systems. Microwave and Optical Technology Letters, 54(6), 1471–1476. doi:10.1002/mop.26835
  • Chen, Y.-H., Hsieh, -H.-H., & Lu, L.-H. (2008). A 24-GHz receiver frontend with an LO signal generator in 0.18-µm CMOS. IEEE Transactions on Microwave Theory and Techniques, 56(5), 1043–1051. doi:10.1109/TMTT.2008.920154
  • Comer, D. J., & Comer, D. T. (2003). Fundamentals of electronic circuit design (1st ed.). New York, NY: John Wiley & Sons.
  • Dan, W. G., Dobberpuhl, D., Allmon, Y. L., & Rethman, N. L. (1997, June). Designing high performance CMOS microprocessors using full custom techniques. In Proceedings of the 34th Design Automation Conference (pp. 1–6).
  • Darabi, H., & Abidi, A. A. (2000). A 4.5–mW 900–MHz CMOS receiver for wireless paging. IEEE Journal of Solid-State Circuits, 35, 1085–1096. doi:10.1109/4.859497
  • Delmas-Bendhia, S., Caignet, F., Sicard, E., & Roca, M. (1999). On-chip sampling in CMOS integrated circuits. IEEE Transactions on Electromagnetic Compatibility, 41(4), 403–406. doi:10.1109/15.809837
  • El-Desouki, M. M., Abdelsayed, S. M., Deen, M. J., Nikolova, N. K., & Haddara, Y. (2009). The impact of on-chip interconnections on CMOS RF integrated circuits. IEEE Transactions on Electron Devices, 56(9), 1882–1890. doi:10.1109/TED.2009.2026194
  • Guan, X., & Hajimiri, A. (2004). A 24-GHz CMOS front-end. IEEE Journal of Solid-State Circuits, 39, 368–373. doi:10.1109/JSSC.2003.821783
  • Guo, W., & Huang, D. (2002, August). The noise and linearity optimization for a 1.9-GHz CMOS low noise amplifier. In Proceedings of the IEEE Asia-Pacific Conference (pp. 253–257).
  • Guo, X., & O, K. K. (2005). A power efficient differential 20-GHz low noise amplifier with 5.3-GHz 3-dB bandwidth. IEEE Microwave and Wireless Components Letters, 15, 603–605. doi:10.1109/LMWC.2005.855383
  • Hacker, J. B., Bergman, J., Nagy, G., Sullivan, G., Kadow, C., Lin, H.-K., … Brar, B. (2004). An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier. IEEE Microwave and Wireless Components Letters, 14(4), 156–158. doi:10.1109/LMWC.2004.827132
  • Horstmann, M., Wiatr, M., Wei, A., Hoentschel, J., Feudel, T., Scheiper, T., … Raab, M. (2009). Advanced SOI CMOS transistor technology for high performance microprocessors. Solid-State Electronics, 53(12), 1212–1219. doi:10.1016/j.sse.2009.09.031
  • Hsieh, -H.-H., & Lu, L.-H. (2005, June). A CMOS 5-GHz micro-power LNA. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (pp. 31–34).
  • Iversen, S. (1975). The effect of feedback on noise figure. Proceedings of the IEEE, 63(3), 540–542. doi:10.1109/PROC.1975.9784
  • Jin, J., & Hsu, S. (2008). A 0.18 µm CMOS balanced amplifier for 24-GHz applications. IEEE Journal of Solid-State Circuits, 43(2), 440–445.
  • Jin, J.-D., & Hsu, S. H. (2009). A K-band low-noise amplifier in 0.18-μm CMOS technology for SUB-1-V operation. Microwave and Optical Technology Letters, 51(9), 2202–2204. doi:10.1002/mop.24530
  • Karanicolas, A. N. (1996). A 2.7-V 900-MHz CMOS LNA and mixer. IEEE Journal of Solid-State Circuits, 31(12), 1939–1944. doi:10.1109/4.545816
  • Khanpour, M., Tang, K. W., Garcia, P., & Voinigescu, S. P. (2008). A wideband W-band receiver front-end in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 43(8), 1717–1730. doi:10.1109/JSSC.2008.926738
  • Lee, T. H. (1998). The design of CMOS radio frequency integrated circuits. Cambridge: Cambridge University Press.
  • Leung, B. (2002). VLSI for wireless communication (1st ed.). New Delhi: Prentice Hall India.
  • Liao, C.-F., & Liu, S.-I. (2005, September). A broadband noise-canceling CMOS LNA for 3.1–10.6 GHz UWB receiver. In Proceedings of the Custom Integrated Circuits Conference (pp.161–164).
  • Lien, C.-H., Deng, K.-L., Liu, C.-C., Chou, H.-S., & Wang, H. (2000, December). Ka band monolithic GaAs PHEMT circuits for transceiver applications. In Proceedings of the IEEE APMC (pp. 1171–1174).
  • Monaco, E., Borgarino, M., Svelto, F., & Mazzanti, A. (2009, September). A 5.2 mW Ku–band CMOS injection-locked frequency doubler with differential input/output. In Proceedings of IEEE Custom Integrated Circuits Conference (pp. 61–64).
  • Nguyen, T.-K., Han, S.-K., & Lee, S.-G. (2005). Ultra-low-power 2.4 GHz image-rejection low-noise amplifier. Electronics Letters, 41(15), 842–843. doi:10.1049/el:20051032
  • Pokharel, R. K., Galal, A. I. A., Nizhnik, O., Kanaya, H., & Yoshida, K. (2008). Design of flat gain and low noise figure LNA for 3.1–10.2 GHz band UWB applications in 0.18 µm CMOS process. In Proceedings of IEEJ International Workshop on AVLSI (pp. 161–164). Turkey.
  • Reja, M. M., Moez, K., & Filanovsky, I. (2010). An area-efficient multistage 3.0- to 8.5-GHz CMOS UWB LNA using tunable active inductors. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(8), 587–591. doi:10.1109/TCSII.2010.2055990
  • Samavati, H., Rategh, H. R., & Lee, T. H. (2000). A 5-GHz CMOS wireless LAN receiver front end. IEEE Journal of Solid-State Circuits, 35, 765–772. doi:10.1109/4.841505
  • Sayag, A., Levin, S., Regev, D., Zfira, D., Shapira, S., Goren, D., & Ritter, D. (2008). A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 µm CMOS. In Proceedings of IEEE RFIC Symposium (pp. 373–376).
  • Shin, S.-C., Tsai, M.-D., Liu, R.-C., Lin, K.-Y., & Wang, H. (2005). A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS technology. IEEE Microwave and Wireless Components Letters, 15(7), 448–450.
  • Spencer, R., & Ghausi, M. (2003). Introduction to electronic circuit design (1st ed.). Upper Saddle River, NJ: Pearson Education.
  • Wang, T.-P. (2010). A low-voltage low-power K-band CMOS LNA using dc current-path split technology. IEEE Microwave and Wireless Components Letters, 20(9), 519–521. doi:10.1109/LMWC.2010.2052794
  • Wei, Y.-L., Hsu, S. H., & Jin, J.-D. (2009). A low-power low-noise amplifier for K-band applications. IEEE Microwave and Wireless Components Letters, 19(2), 116–118. doi:10.1109/LMWC.2008.2011340
  • Weng, R.-M., Fan, M.-L., & Zeng, M.-J. (2012, May). A 5.9 mW full-band low-noise-amplifier for ultra-wideband systems. In Proceedings of IEEE International Symposium Circuits and Systems (pp. 1931–1934).
  • Wu, H.-I., Hu, R., & Jou, C. F. (2010). Complementary UWB LNA design using asymmetrical inductive source degeneration. IEEE Microwave and Wireless Components Letters, 20(7), 402–404. doi:10.1109/LMWC.2010.2049440
  • Yeh, J. F., Yang, C. Y., Kuo, H. C., & Chuang, H. R. (2009). A 24 GHz transformer-based single-in differential-out CMOS low-noise amplifier. In Proceedings IEEE RFIC Symposium (pp. 299–302).
  • Yu, K.-W., Lu, Y.-L., Chang, D.-C., Liang, V., & Chang, M. F. (2004). K-band low-noise amplifiers using 0.18 µm CMOS technology. IEEE Microwave and Wireless Components Letters, 14, 106–108. doi:10.1109/LMWC.2004.825175
  • Yu, Y.-H., Hsu, W.-H., & Chen, Y. (2010). A Ka-band low noise amplifier using forward combining technique. IEEE Microwave and Wireless Components Letters, 20(12), 672–674. doi:10.1109/LMWC.2010.2085425

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.