256
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms of temperature dependence of threshold voltage in high-k/metal gate transistors with different TiN thicknesses

&
Pages 629-647 | Received 03 Jun 2014, Accepted 07 Mar 2015, Published online: 28 Apr 2015

References

  • Beye, M., Hennies, F., Deppe, M., Suljoti, E., Nagasono, M., Wurth, W., & Föhlisch, A. (2010). Measurement of the predicted asymmetric closing behaviour of the band gap of silicon using x-ray absorption and emission spectroscopy. New Journal of Physics, 12, 043011. doi:10.1088/1367-2630/12/4/043011
  • Blevis, E. H., & Crowell, C. R. (1964). Temperature dependence of the work function of single-crystal faces of copper. Physical Reviews, 133, A580–A584. doi:10.1103/PhysRev.133.A580
  • Crowell, C. R., & Armstrong, R. A. (1959). Temperature dependence of the work function of silver, sodium, and potassium. Physical Reviews, 114, 1500–1506. doi:10.1103/PhysRev.114.1500
  • Dadgour, H., Endo, K., De, V., & Banerjee, K. (2008, December). Modeling and analysis of grain orientation effects in emerging MG devices and implications for SRAM reliability. IEDM technical digest, San-Francisco, CA (pp. 705–708). IEEE.
  • Gaillard, N., Mariolle, D., Bertin, F., Gros-Jean, M., Proust, M., Bsiesy, A., … Djebbouri, M. (2006). Characterization of electrical and crystallographic properties of metal layers at decananometer scale using Kelvin probe force microscope. Microelectronic Engineering, 83(11–12), 2169–2174. doi:10.1016/j.mee.2006.09.028
  • Garros, X., Casse, M., Reimbold, G., Rafik, M., Martin, F., Andrieu, F., … Boulanger, F. (2009). Performance and reliability of advanced high-k/metal gate stacks (Invited Paper). Microelectronic Engineering, 86, 1609–1614. doi:10.1016/j.mee.2009.03.100
  • Han, K., Ma, X., Yang, H., & Wang, W. (2013). Modulation of the effective work function of TiN metal gate for PMOS application. Journal of Semiconductors, 34, 086002.
  • Han, S.-J., Wang, X., Chang, P., Guo, D., Na, M.-H., & Rim, K. (2008, December). On the difference of temperature dependence of metal gate and poly gate SOI MOSFET threshold voltages. IEDM technical digest, San-Francisco, CA (pp. 585–588). IEEE.
  • Han, S. K., Jung, H.-S., Lim, H., Kim, M. J., Lee, C.-K., Lee, M. S., & Kang, H.-K. (2006, December). Highly manufacturable single metal gate process using ultra-thin metal inserted poly-Si stack (UT-MIPS). IEDM technical digest, San-Francisco, CA (pp. 621–624). IEEE.
  • Hayashi, T., Nishida, Y., Sakashita, S., Mizutani, M., Yamanari, S., Higashi, M., & Inoue, Y. (2006, December). Cost worthy and high performance LSTP CMIS; Poly-Si/HfSiON nMIS and poly-Si/TiN/HfSiON pMIS. IEDM technical digest, San-Francisco, CA (pp. 247–251). IEEE.
  • Holleck, H. (1986). Material selection for hard coatings. Journal Vac Sciences Technological, A 4(6), 2661–2669.
  • Hsieh, E. R., Lu, P. Y., Chung, S., Chang, K. Y., Liu, C. H., Ke, J. C., & Tsai, C. T. (2014, June). The experimental demonstration of the BTI-induced breakdown path in 28nm high-k metal gate technology CMOS devices. VLSI technical digest, Honolulu, HI (pp. 106–107). IEEE.
  • Iijima, R., & Takayanagi, M. (2008, December). Experimental and theoretical analysis of factors causing asymmetrical temperature dependence of Vt in high-k metal gate CMOS with capped high-k techniques. IEDM technical digest, San-Francisco, CA (pp. 581–584). IEEE.
  • Jung, H.-S., Lee, J.-H., Han, S. K., Kim, Y.-S., Lim, H. J., Kim, M. J., & Chung, Y. S. (2005, June). A highly manufacturable MIPS (metal inserted poly-Si stack) technology with novel threshold voltage control. VLSI technical digest, Kyoto (pp. 232–233). IEEE.
  • Klaassen, F. M., & Hes, W. (1986). On the temperature coefficient of the MOSFET threshold voltage. Solid-State Electronics, 29(8), 787–789. doi:10.1016/0038-1101(86)90180-2
  • Konofaosa, N., & Alexioub, G. P. (2008). A methodology for the implementation of MOSFETs with a high-k dielectric gate material on the design of 90 nm technology circuits. International Journal of Electronics, 95, 333–349. doi:10.1080/00207210801976461
  • Kuriyama, A., Faynot, O., Brevard, L., Tozzo, A., Clerc, L., Deleonibus, S., & Iwai, H. (2006, September). Work function investigation in advanced metal gate-HfO2-SiO2 systems with bevel structures. Proceeding of the 36th European solid-state device research conference, Montreux (pp. 109–112). IEEE. doi:10.1109/ESSDER.2006.307650
  • Kwon, U., Wong, K., Krishnan, S. A., Econimikos, L., Zhanga, X., Ortolland, C., & Chudzik, M. P. (2012, June). A novel low resistance gate fill for extreme gate length scaling at 20nm and beyond for gate-last high-k/metal gate CMOS technology. VLSI technical digest, Honolulu, HI (pp. 29–30). IEEE.
  • Lang, N. D., & Kohn, W. (1970). Theory of metal surfaces: Charge density and surface energy. Physical Reviews B, 1, 4555–4568. doi:10.1103/PhysRevB.1.4555
  • Lang, N. D., & Kohn, W. (1971). Theory of metal surfaces: Work function. Physical Reviews B, 3, 1215–1223. doi:10.1103/PhysRevB.3.1215
  • Mistry, K., Allen, C., Auth, C., Beattie, B., Bergstrom, D., Bost, M., & Zawadzki, K. (2007, December). A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. IEDM technical digest, Washington, DC (pp. 247–250). IEEE.
  • Narayanan, V., Paruchuri, V. K., Bojarczuk, N. A., Linder, B. P., Doris, B., Kim, Y. H., & Chen, T. C. (2006, June). Band-edge high-performance high-κ/metal gate n-MOSFETs using cap layers containing group IIA and IIIB elements with gate-first processing for 45 nm and beyond. VLSI technical digest, Honolulu, HI (pp. 224–225). IEEE.
  • Naresh, S. S., Mohapatra, N. R., & Duhan, P. K. (2013, September). Effects of HfO2 and lanthanum capping layer thickness on the narrow width behavior of gate first high-k and metal gate NMOS transistors. Extended abstracts in solid state devices and materials, Fukuoka (pp. 60–61). The Japan Society of Applied Physics.
  • Nishida, Y., Eikyu, K., Shimizu, A., Yamashita, T., Oda, H., Inoue, Y., & Shibahara, K. (2010). Temperature coefficient of threshold voltage in high-k metal gate transistors with various TiN and capping layer thicknesses. Japanese Journal Applications Physical, 49, 04DC03.
  • Ren, P., Hao, P., Liu, C., Wang, R., Jiang, X., Qiu, Y., & Wang, Y. (2013, December). New observations on complex RTN in scaled high-κ/metal-gate MOSFETs – The role of defect coupling under DC/AC condition. IEDM technical digest, Washington, DC (pp. 778–781). IEEE.
  • Rodrigues, M., Mercha, A., Simoen, E., Collaert, N., Claeys, C., & Martino, J. A. (2009, March). Impact of TiN metal gate thickness and the HfSiO nitridation on MuGFETs electrical performance. Proceedings of the 10th international conference on ultimate integration of silicon, Aachen (pp. 189–192). IEEE. doi:10.1109/ULIS.2009.4897568
  • Saito, S., Torii, K., Hiratani, M., & Onai, T. (2002). Analytical quantum mechanical model for accumulation capacitance of MOS structures. IEEE Electronic Device Letters, 23, 348–350. doi:10.1109/LED.2002.1004231
  • Samavedam, S. B., Tseng, H. H., Tobin, P. J., Mogab, J., Dakshina-Murthy, S., La, L. B., & Azrak, M. (2002, June). Metal gate MOSFETs with HfO2 gate dielectric. VLSI technical digest, Honolulu, HI (pp. 24–25). IEEE.
  • Scherrer, P. (1918). Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen [Regulation of the size and the inner structure of colloid particles by means of x-rays]. Göttinger Nachrichten Gesell., 2, 98–100.
  • Singanamalla, R., Yu, H. Y., Pourtois, G., Ferain, I., Anil, K. G., Kubicek, S., … De Meyer, K. (2006). On the impact of TiN film thickness variations on the effective work function of poly-Si/TiN/SiO/sub 2/ and poly-Si/TiN/HfSiON gate stacks. IEEE Electronic Device Letters, 27, 332–334. doi:10.1109/LED.2006.872916
  • Sze, S. M., & Ng, K. K. (2007). Physics of semiconductor devices (3rd ed.). Hoboken, NJ: John Wiley & Sons.
  • Tateshita, Y., Wang, J., Nagano, K., Hirano, T., Miyanami, Y., Ikuta, T., & Nagashima, N. (2006, December). High-performance and low-power CMOS device technologies featuring metal/high-k gate stacks with uniaxial strained silicon channels on (100) and (110) substrates. IEDM technical digest, San-Francisco, CA (pp. 63–66). IEEE.
  • Taur, Y., & Ning, T. H. (1998). Fundamentals of modern VLSI devices. Cambridge: Cambridge University Press.
  • Thurmond, C. D. (1975). The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP. Journal Electrochem Social, 122, 1133–1141.
  • Tomimatsu, T., Goto, Y., Kato, H., Amma, M., Igarashi, M., Kusakabe, Y., & Ogura, M. (2009, June). Cost-effective 28-nm LSTP CMOS using Gate-First Metal Gate/High-K Technology. VLSI technical digest, Kyoto (pp. 36–37). IEEE.
  • Tzou, J. J., Yao, C. C., Cheung, R., & Chan, H. (1985). The temperature dependence of threshold voltages in submicrometer CMOS. IEEE Electronic Device Letters, 6, 250–252. doi:10.1109/EDL.1985.26114
  • Walke, A. M., & Mohapatra, N. R. (2012). Effects of small geometries on the performance of gate first high- metal gate NMOS transistors. IEEE Transactions Electronic Devices, 59, 2582–2588. doi:10.1109/TED.2012.2208647
  • Yang, S., Ge, L., Lin, J., Han, M., Yang, D., Wang, J., & Yeap, G. (2014, June). High performance mobile SoC design and technology co-optimization to mitigate high-k metal gate process induced variations. VLSI technical digest, Honolulu, HI (pp. 90–91). IEEE.
  • Yeo, Y.-C., Ranade, P., King, T.-J., & Hu, C. (2002). Effects of high-k gate dielectric materials on metal and silicon gate workfunctions. IEEE Electronic Device Letters, 23, 342–344. doi:10.1109/LED.2002.1004229
  • Yu, H. Y., Ren, C., Yeo, Y.-C., Kang, J. F., Wang, X. P., Ma, H. H. H., … Kwong, D.-L. (2004). Fermi pinning-induced thermal instability of metal-gate work functions. IEEE Electronic Device Letters, 25, 337–339. doi:10.1109/LED.2004.827643

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.