222
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

New highly linear tunable transconductor circuits with low number of MOS transistors

&
Pages 1301-1317 | Received 02 Oct 2014, Accepted 27 Jun 2015, Published online: 28 Sep 2015

References

  • Demosthenous, A., & Panovic, M. (2005). Low-voltage MOS linear transconductor/squarer and four-quadrant multiplier for analog VLSI. IEEE Transactions on Circuits and Systems-I: Regular Papers, 52, 1721–1731. doi:10.1109/TCSI.2005.852483
  • El-Adawy, A. A., & Soliman, A. M. (2000). A low-voltage single input class AB transconductor with rail-to-rail input range. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47, 236–242. doi:10.1109/81.828577
  • Fayed, A. A., & Ismail, M. (2005). A low-voltage, highly linear voltage-controlled transconductor. IEEE Transactions on Circuits and Systems-II: Express Briefs, 52, 831–835. doi:10.1109/TCSII.2005.853511
  • Gatti, U., Maloberti, F., Palmisano, G., & Torelli, G. (1994). CMOS triode-transistor transconductor for high-frequency continuous-time filters. IEE Proceedings – Circuits, Devices and Systems, 141, 462–468. doi:10.1049/ip-cds:19941136
  • Geiger, R. L., & Sánchez-Sinencio, E. (1985). Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Magazine, 1, 20–32. doi:10.1109/MCD.1985.6311946
  • Gift, S. J. G. (2004). New simulated inductor using operational conveyors. International Journal of Electronics, 91, 477–483. doi:10.1080/0020721042000281399
  • Han, I. (2006). A novel tunable transconductance amplifier based on voltage-controlled resistance by MOS transistors. IEEE Transactions on Circuits and Systems-II: Express Briefs, 53, 662–666. doi:10.1109/TCSII.2006.875309
  • Ismail, A. M., & Soliman, A. M. (2000). Novel CMOS wide-linear-range transconductance amplifier. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 47, 1248–1253. doi:10.1109/81.873880
  • Krummenacher, F., Vittoz, E., & Degrauwe, M. (1981). Class AB CMOS amplifier micropower SC filters. Electronics Letters, 17, 433–435. doi:10.1049/el:19810304
  • Kuo, K.-C., & Leuciuc, A. (2001). A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 48, 937–943. doi:10.1109/82.974782
  • Mahmoud, S. A., & Soliman, A. M. (1999). New CMOS fully differential difference transconductors and application to fully differential filters suitable for VLSI. Microelectronics Journal, 30, 169–192. doi:10.1016/S0026-2692(98)00105-0
  • Martinez-Heredia, J. M., & Torralba, A. (2011). Enhanced source-degenerated CMOS differential transconductor. Microelectronics Journal, 42, 396–402. doi:10.1016/j.mejo.2010.10.011
  • Maundy, B., & Gift, S. J. G. (2011). Active grounded inductor circuit. International Journal of Electronics, 98, 555–567. doi:10.1080/00207217.2010.547807
  • Metin, B. (2012). Canonical inductor simulators with grounded capacitors using DCCII. International Journal of Electronics, 99, 1027–1035. doi:10.1080/00207217.2011.639274
  • Minaei, S., & Yuce, E. (2012). High input impedance NMOS-based phase shifter with minimum number of passive elements. Circuits, Systems, and Signal Processing, 31, 51–60. doi:10.1007/s00034-011-9290-0
  • Nauta, B. (1992). A CMOS transconductance-C filter technique for very high frequencies. IEEE Journal of Solid-State Circuits, 27, 142–153. doi:10.1109/4.127337
  • Nedungadi, A., & Viswanathan, T. R. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, 31, 891–894. doi:10.1109/TCS.1984.1085428
  • Ohbuchi, T., & Matsumoto, F. (2013). A new design of a linear local-feedback MOS transconductor for low frequency applications. Analog Integrated Circuits and Signal Processing, 75, 257–266. doi:10.1007/s10470-012-0006-6
  • Park, C.-S., & Schaumann, R. (1986). A high-frequency CMOS linear transconductance element. IEEE Transactions on Circuits and Systems, 33, 1132–1138. doi:10.1109/TCS.1986.1085859
  • Razavi, B. (2008). Fundamentals of microelectronics (1st ed.). New York, NY: Wiley.
  • Tongpoon, P., Matsumoto, F., Takeuchi, H., Ohbuchi, T., & Ishio, R. (2012). A novel design of local-feedback MOS transconductor using techniques for cancellation of mobility degradation and linearization of differential output current characteristic. Analog Integrated Circuits and Signal Processing, 72, 565–574. doi:10.1007/s10470-011-9783-6
  • Torralba, A., Martìnez-Heredia, J. M., Carvajal, R. G., & Ramìrez-Angulo, J. (2002). Low-voltage transconductor with high linearity and large bandwidth. Electronics Letters, 38, 1616–1617. doi:10.1049/el:20021172
  • Vishay Siliconic. (2001). 2N7000 N-channel 60-V (D-S) MOSFET datasheet. Document Number: 70226, S-04279, [ Revised 2001 Jul 16; cited 2014 May 02]. p. 6. Retrieved from http://www.vishay.com
  • Vlassis, S., & Raikos, G. (2012). Adjustable MOS transconductors based on master-slave technique. International Journal of Electronics, 99, 379–390. doi:10.1080/00207217.2011.629218
  • Worapished, A., & Naphaphan, C. (2003). Current-feedback source-degenerated CMOS transconductor with very high linearity. Electronics Letters, 39, 17–18. doi:10.1049/el:20030050
  • Yamaguchi, I., Matsumoto, F., & Noguchi, Y. (2005). Technique to improve linearity of transconductor with bias offset voltages controlling a tail current. Electronics Letters, 41, 1146–1148. doi:10.1049/el:20052731
  • Yuce, E. (2007). Inductor implementation using a canonical number of active and passive elements. International Journal of Electronics, 94, 317–326. doi:10.1080/00207210701257343
  • Yuce, E. (2009). Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integrated Circuits and Signal Processing, 59, 77–82. doi:10.1007/s10470-008-9235-0
  • Yuce, E., & Minaei, S. (2008). Universal current-mode filters and parasitic impedance effects on the filter performances. International Journal of Circuit Theory and Applications, 36, 161–171. doi:10.1002/cta.418
  • Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Full-wave rectifier realization using only two CCII+s and NMOS transistors. International Journal of Electronics, 93, 533–541. doi:10.1080/00207210600711606
  • Zetex. (2014). BS250P P-channel enhancement mode vertical DMOS FET datasheet, p. 1. Retrieved May 2, from http://diodes.com/datasheets/BS250P.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.