175
Views
18
CrossRef citations to date
0
Altmetric
Articles

A new twelve-transistor approximate 4:2 compressor in CNTFET technology

& ORCID Icon
Pages 691-706 | Received 20 Nov 2017, Accepted 03 Nov 2018, Published online: 28 Nov 2018

References

  • Akbari, O., Kamal, M., Afzali-Kusha, A., & Pedram, M. (2017). Dual-quality 4: 2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(4), 1352–1361.
  • Budin, L., Jakobović, D., & Golub, M. (2000). Genetic algorithms in real-time imprecise computing. CIT. Journal of Computing and Information Technology, 8(3), 249–257.
  • Chang, C.-H., Gu, J., & Zhang, M. (2004). Ultra low-voltage low-power CMOS 4-2 and 5-2 compressors for fast arithmetic circuits. Circuits and Systems I: Regular Papers, IEEE Transactions On, 51(10), 1985–1997.
  • Deng, J., & Wong, H. P. (2007a). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region. Electron Devices, IEEE Transactions On, 54(12), 3186–3194.
  • Deng, J., & Wong, H. P. (2007b). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: Full device model and circuit performance benchmarking. Electron Devices, IEEE Transactions On, 54(12), 3195–3205.
  • Ebrahimi, S., & Reshadinezhad, M. (2015). Exploring and exploiting quantum-dot cellular automata. International Journal of Nanoscience and Nanotechnology, 11(4), 225–232.
  • Ebrahimi, S. A., & Keshavarzian, P. (2013). Fast low-power full-adders based on bridge style minority function and multiplexer for nanoscale. International Journal of Electronics, 100(6), 727–745.
  • Ebrahimi, S. A., Reshadinezhad, M. R., Bohlooli, A., & Shahsavari, M. (2016). Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectronics Journal, 53, 156–166.
  • Han, J., & Orshansky, M. (2013). Approximate computing: An emerging paradigm for energy-efficient design. 18th IEEE European Test Symposium (ETS), Avignon, France.
  • Huang, J., Lach, J., & Robins, G. (2012). A methodology for energy-quality tradeoff using imprecise hardware. Proceedings of the 49th Annual Design Automation Conference, San Francisco, CA.
  • Jiang, H., Han, J., Qiao, F., & Lombardi, F. (2015). Approximate radix-8 booth multipliers for low-power and high-performance operation. IEEE Transactions on Computers, 65(8), 2638–2644.
  • Kim, Y.-B. (2010). Challenges for nanoscale MOSFETs and emerging nanoelectronics. Transactions on Electrical and Electronic Materials, 11(3), 93–105.
  • Kulkarni, P., Gupta, P., & Ercegovac, M. (2011). Trading accuracy for power with an underdesigned multiplier architecture. VLSI Design (VLSI Design), 2011 24th Internatioal Conference on VLSI Design, Chennai, India.
  • Kyaw, K. Y., Goh, W. L., & Yeo, K. S. (2010). Low-power high-speed multiplier for error-tolerant application. 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China.
  • Liang, J., Han, J., & Lombardi, F. (2013). New metrics for the reliability of approximate and probabilistic adders. Computers, IEEE Transactions On, 62(9), 1760–1771.
  • Lin, S., Kim, Y.-B., & Lombardi, F. (2009). A novel CNTFET-based ternary logic gate design. Circuits and Systems, 2009. MWSCAS’09. 52nd IEEE International Midwest Symposium on, Cancun, Mexico.
  • Liu, C., Han, J., & Lombardi, F. (2014). A low-power, high-performance approximate multiplier with configurable partial error recovery. Proceedings of the conference on Design, Automation & Test in Europe, Dresden, Germany.
  • Lu, S.-L. (2004). Speeding up processing with approximation circuits. Computer, 37(3), 67–73.
  • Mahdiani, H. R., Ahmadi, A., Fakhraie, S. M., & Lucas, C. (2010). Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. Circuits and Systems I: Regular Papers, IEEE Transactions On, 57(4), 850–862.
  • Mehrabi, S., Navi, K., & Hashemipour, O. (2013). Performance analysis and simulation of two different architectures of (6: 3) and (7: 3) compressors based on carbon nano-tube field effect transistors. Nanoelectronics Conference (INEC), 2013 IEEE 5th International, Singapore.
  • Moaiyeri, M. H., Chavoshisani, R., Jalali, A., Navi, K., & Hashemipour, O. (2016). Efficient radix-r adders for nanoelectronics. International Journal of Electronics, 103(2), 281–296.
  • Moaiyeri, M. H., Doostaregan, A., & Navi, K. (2011). Design of energy-efficient and robust ternary circuits for nanotechnology. Circuits, Devices & Systems, IET, 5(4), 285–296.
  • Moaiyeri, M. H., Mirzaee, R. F., Navi, K., & Momeni, A. (2012). Design and analysis of a high-performance CNFET-based full adder. International Journal of Electronics, 99(1), 113–130.
  • Momeni, A., Han, J., Montuschi, P., & Lombardi, F. (2015). Design and analysis of approximate compressors for multiplication. Computers, IEEE Transactions On, 64(4), 984–994.
  • Monajati, M., Fakhraie, S., & Kabir, E. (2015). Approximate arithmetic for low-power image median filtering. Circuits, Systems, and Signal Processing, 34(10), 3191–3219.
  • Raychowdhury, A., Mukhopadhyay, S., & Roy, K. (2004). A circuit-compatible model of ballistic carbon nanotube field-effect transistors. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions On, 23(10), 1411–1420.
  • Raychowdhury, A., & Roy, K. (2007). Carbon nanotube electronics: Design of high-performance and low-power digital circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(11), 2391–2401.
  • Reshadinezhad, M. R., Charmchi, N., & Navi, K. (2015). Design and implementation of a three-operand multiplier through carbon nanotube technology. International Journal of Modern Education and Computer Science, 7(9), 44.
  • Reshadinezhad, M. R., Moaiyeri, M. H., & Navi, K. (2012). An energy-efficient full adder cell using CNFET technology. IEICE Transactions on Electronics, 95(4), 744–751.
  • Reshadinezhad, M. R., & Navi, K. (2012). High-speed multiplier design using multi-operand multipliers. International Journal of Computer Science and Network.
  • Sharifi, F., Moaiyeri, M. H., Navi, K., & Bagherzadeh, N. (2016). Ultra-low-power carbon nanotube FET-based quaternary logic gates. International Journal of Electronics, 103(9), 1524–1537.
  • Sharifi, F., Panahi, A., Moaiyeri, M. H., Sharifi, H., & Navi, K. (2018). High Performance CNFET-based ternary full adders. IETE Journal of Research, 64(1), 108–115.
  • Shirinabadi Farahani, S., Zarhoun, R., Moaiyeri, M. H., & Navi, K. (2013). An efficient cntfet-based 7-input minority gate. arXiv preprint arXiv:1303.2175
  • Shulaker, M. M., Hills, G., Patil, N., Wei, H., Chen, H.-Y., Wong, H.-S. P., & Mitra, S. (2013). Carbon nanotube computer. Nature, 501(7468), 526.
  • Zareei, Z., Navi, K., & Keshavarziyan, P. (2018). Low-power, high-speed 1-bit inexact full adder cell designs applicable to low-energy image processing. International Journal of Electronics, 105(3), 375–384.
  • Zarhoun, R., Moaiyeri, M. H., Farahani, S. S., & Navi, K. (2014). An efficient 5-input exclusive-OR circuit based on carbon nanotube FETs. ETRI Journal, 36(1), 89–98.
  • Zervakis, G., Tsoumanis, K., Xydis, S., Soudris, D., & Pekmestzi, K. (2016). Design-efficient approximate multiplication circuits through partial product perforation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(10), 3105–3117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.