189
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A nonlinear current mirror method for improving the slew rate of subthreshold current recycling OTAs

, &
Pages 1374-1391 | Received 28 Dec 2020, Accepted 30 Jul 2021, Published online: 31 Aug 2021

References

  • Akbari, M. (2015). Single-stage fully recycling folded cascode OTA for switched-capacitor circuits. Electronics Letters, 51(13), 977–979. https://doi.org/10.1049/el.2015.1053
  • Assaad, R., & Silva-Martinez, J. (2007). Enhancing general performance of folded cascode amplifier by recycling current. Electronics Letters, 43(23), 1–2. https://doi.org/10.1049/el:20072031
  • Assaad, R., & Silva-Martinez, J. (2009). The recycling folded cascode: A general enhancement of the folded cascode amplifier. IEEE Journal of Solid-State Circuits, 44(9), 2535–2542. https://doi.org/10.1109/JSSC.2009.2024819
  • Bernal, V., Rodanas, M., Celma, S., Medrano, N., & Calvo, B. (2012). An ultralow-power low-voltage class-AB fully differential opamp for long-life autonomous portable equipment. IEEE Transactions on Circuits and Systems II Express Briefs, 59(10), 643–647. https://doi.org/10.1109/TCSII.2012.2213361
  • Ditucalan, D. D., & Lowaton, A. C. (2017). A gm/ID method based 0.5V-subthreshold operational amplifier with current subtractor adaptive biasing circuit for ultra-low power application, IEEE International Conference on Advances in Electrical. https://doi.org/10.1109/ICAEES.2016.7888011
  • Eldeeb, M. A., Ghallab, Y. H., Ismail, Y., & Elghitani, H. (2017). Low-voltage subthreshold CMOS current mode circuits: Design and applications. International Journal of Electronics and Communications (AEU), 82, 251–264. https://doi.org/10.1016/j.aeue.2017.08.049
  • Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2007). An ultra-low-voltage ultra-low-power CMOS Miller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems II Express Briefs, 54(10), 843–847. https://doi.org/10.1109/TCSII.2007.902216
  • Ferreira, L. H. C., & Sonkusale, S. R. (2014). A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6), 1609–1617. https://doi.org/10.1109/TCSI.2013.2289413
  • Galan, J. A., Lopez-Martin, A. J., Carvajal, R. G., Ramirez-Angulo, J., & Rubia-Marcos, C. (2007). Super class-AB OTAs with adaptive biasing and dynamic output current scaling. IEEE Transactions on Circuits and Systems I Regular Papers, 54(3), 449–457. https://doi.org/10.1109/TCSI.2006.887639
  • Garde, M. P., Lopez-Martin, A., Carvajal, R. G., & Jaime, R.-A. (2018). Super class-AB recycling folded cascode OTA. IEEE Journal of Solid-State Circuits, 53(9), 2614–2623. https://doi.org/10.1109/JSSC.2018.2844371
  • Grasso, A. D., Marano, D., Palumbo, G., & Pennisi, S. (2015). Design methodology of subthreshold three-stage CMOS OTAs suitable for ultra-low-power low-area and high driving capability. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(6), 1453–1462. https://doi.org/10.1109/TCSI.2015.2411796
  • Kaliyath, Y., & Laxminidhi, T. (2019). A 1.8 V 8.62 µ W inverter-based gain-boosted OTA with 109.3 dB DC Gain for SC Circuits. IETE Journal of Research, 65(6), 749–757. https://doi.org/10.1080/03772063.2018.1464968
  • Kulej, T., & Khateb, F. (2018). Design and implementation of sub 0.5-V OTAs in 0.18 um CMOS. International Journal of Circuit Theory and Applications, 46(6), 1129–1143. https://doi.org/10.1002/cta.2465
  • Kulej, T., & Khateb, F. (2020b). A 0.3-V 98-dB rail-to-rail OTA in 0.18 um CMOS. IEEE Access, 8(1), 27459–27467. https://doi.org/10.1109/ACCESS.2020.2972067
  • Kulej, T., & Khateb, F. (2020b). A compact 0.3-V class AB bulk-driven OTA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1), 224–232. https://doi.org/10.1109/TVLSI.2019.2937206
  • Lopez-Martin, A., Garde, M. P., Algueta, J. M., De, L., Carvajal, R. G., & Ramirez-Angulo, J. (2017). Enhanced single-stage folded cascode OTA suitable for large capacitive loads. IEEE Transactions on Circuits and Systems II: Express Briefs, 65((4), 441–445. https://doi.org/10.1109/TCSII.2017.2700060
  • Lopez-Martin, A. J., Baswa, S., Ramirez-Angulo, J., & Carvajal, R. G. (2005). Low-voltage super class AB CMOS OTA cells with very high slew rate and power efficiency. IEEE Journal of Solid-State Circuits, 40(5), 1068–1077. https://doi.org/10.1109/JSSC.2005.845977
  • Namdari, A., & Dolatshahi, M. (2017). A new ultra low-power, universal OTA-C filter in subthreshold region using bulk-drive technique. International Journal of Electronics and Communications (AEU), 82, 458–466. https://doi.org/10.1016/j.aeue.2017.09.020
  • Parvizi, M. (2018). Design of a new low power miso multi-mode universal biquad OTA-C filter. International Journal of Electronics, 106(10), 440–454. https://doi.org/10.1080/00207217.2018.1540064
  • Ragheb, A. N., & Kim, H. W. (2017). Ultra-low power OTA based on bias recycling and subthreshold operation with phase margin enhancement. International Journal of Electronics and Communications (AEU), 60, 94–101. https://doi.org/10.1016/j.mejo.2016.12.007
  • Saso, J. M., Lopez-Martin, A. J., Garde, M. P., & Ramirez-Angulo, J. (2017). Power-efficient class AB fully differential amplifier. Electronics Letters, 53(19), 1298–1300. https://doi.org/10.1049/el.2017.2070
  • Suh, Y., Choi, S., & Sim, J. Y. (2016). A low-power class-AB gm-based amplifier with application to an 11-bit pipelined ADC. IEEE Transactions on Very Large Scale Integration Systems, 24(7), 2562–2569. https://doi.org/10.1109/TVLSI.2015.2504494
  • Sutula, S., Dei, M., Terés, L., & Serra-Graells, F. (2016). Variable-mirror amplifier: A new family of process-independent class-AB single-stage OTAs for low-power SC circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(8), 1101–1110. https://doi.org/10.1109/TCSI.2016.2577838
  • Tarunkumar, H., Singh, Y. S., & Ranjan, A. (2019). An active inductor employing a new four terminal floating nullor transconductance amplifier (FTFNTA). International Journal of Electronics, 107(2), 683–702. https://doi.org/10.1080/00207217.2019.1672807
  • Wang, Y., Zhang, Q., Yu, S. S., Zhao, X., & Shi, P. (2020). A robust local positive feedback based performance enhancement strategy for non-recycling folded cascode OTA. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(9), 2897–2908. https://doi.org/10.1109/TCSI.2020.2988310
  • Yan, Z., Mak, P. I., Law, M. K., Martins, R. P., & Maloberti, F. (2015). Nested-current-mirror rail-to-rail-output single-stage amplifier with enhancements of DC gain, GBW and slew rate. IEEE Journal of Solid-State Circuits, 50(10), 2353–2366. https://doi.org/10.1109/JSSC.2015.2453195
  • Zanjani, M. S., Khatib, F., & Chabok, S. J. S. M. (2020). Multistage operational transconductance amplifier frequency compensation technique based on fully differential feedback stage. International Journal of Numerical Modelling-Electronic Networks Devices and Fields, 33(2).e2702. https://doi.org/10.1002/jnm.2702
  • Zhang, Q., Wang, Y., Zhao, X., & Dong, L. (2019). Single-stage multipath class-AB bulk-driven OTA with enhanced power efficiency. AEU-International Journal of Electronics and Communications, 107, 39–48. https://doi.org/10.1016/j.aeue.2019.05.011
  • Zhang, Q., Zhao, X., Zhang, X., & Dong, L. (2017). Multipath recycling method for transconductance enhancement of folded cascode amplifier. International Journal of Electronics and Communications (AEU), 72, 1–7. https://doi.org/10.1016/j.aeue.2016.11.010
  • Zhao, X., Wang, Y., Jia, D., & Dong, L. (2018). Ultra-high current efficiency single-stage class-AB OTA with completely symmetric slew rate. International Journal of Electronics and Communications (AEU), 87, 65–69. https://doi.org/10.1016/j.aeue.2018.02.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.