124
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A resistorless low-power voltage reference based on mutual temperature cancellation of VT and VTH

ORCID Icon
Pages 1407-1420 | Received 27 Feb 2021, Accepted 28 Jul 2021, Published online: 27 Aug 2021

References

  • Albano, D., Crupi, F., Cucchi, F., & Iannaccone, G. (2015). A Sub kT/q Voltage Reference Operating at 150 mV. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(8), 1547–1551. https://doi.org/10.1109/TVLSI.2014.2340576
  • Hirose, T., Ueno, K., Kuroki, N., & Numa, M. (2010, November). A CMOS bandgap and sub-bandgap voltage reference circuits for nanowatt power LSIs. Proc. IEEE Asian Solid State Circuits Conf (A-SSCC). (p. 1–4).Beijing, China. https://doi.org/10.1109/ASSCC.2010.5716561
  • Jiang, J., Shu, W., & Chang, J. S. (2017). A 5.6 ppm/°C Temperature coefficient, 87-dB PSRR, Sub-1-V voltage Reference in 65-nm CMOS exploiting the zero-temperature-coefficient point. IEEE Journal of Solid-State Circuits, 52(3), 623–633. https://doi.org/10.1109/JSSC.2016.2627544
  • Lee, K., Lande, T. S., & Hafliger, P. (2015). A Sub μW bandgap reference circuit with an inherent curvature-compensation property. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1), 1–9. https://doi.org/10.1109/TCSI.2014.2340553
  • Mannepalli, C., Kumar, R., & Rao, S. I. (2019, May). Design of a two-stage operational amplifier with zero compensation for accurate bandgap reference circuit. Journal of Acta Physica Polonica, 135(5), 977–979. https://doi.org/10.12693/APhysPolA.135.977
  • Mattia, O. E., Klimach, H., & Bampi, S. (2015). Sub-1 V supply 5 nW 11 ppm/°C resistorless sub-bandgap voltage reference. Analog Integrated Circuit Signal Processing, 85(1), 17–25. https://doi.org/10.1007/s10470-015-0582-3
  • Osaki, Y., Hirose, T., Kuroki, N., & Numa, M. (2013, June). 1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V sub-bandgap reference circuits for nanowatt CMOS LSIs. IEEE Journal of Solid-State Circuits, 48(6), 1530–1538. https://doi.org/10.1109/JSSC.2013.2252523
  • Rashtian, M. (2020). Sub 1-V supply voltage-reference based on mutual temperature cancellation of VT and VTH. Analog Integrated Circuits and Signal Processing, 105(3), 477–482. https://doi.org/10.1007/s10470-020-01704-y
  • Rashtian, M., & Vafapour, M. (2021, May). Gain boosted folded cascode Op-Amp with capacitor coupled auxiliary amplifiers. International Journal of Engineering, 34(5), 1233–1238. https://doi.org/10.5829/ije.2021.34.05b.16
  • Seok, M., Kim, G., Blaauw, D., & Sylvester, D. (2012, October). A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE Journal of Solid-State Circuits, 47(10), 2534–2545. https://doi.org/10.1109/JSSC.2012.2206683
  • Tan, X. L., Chan, P. K., & Dasgupta, U. (2015, October). A sub-1-V 65-nm MOS threshold monitoring-based voltage reference. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(10), 2317–2321. https://doi.org/10.1109/TVLSI.2014.2361766
  • Thakur, A., Pandey, R., & Rai, S. K. (2020, November). Low temperature coefficient and low line sensitivity subthreshold curvature‐compensated voltage reference. International Journal of Circuit Theory and Applications, 48(11), 1900–1921. https://doi.org/10.1002/cta.2857
  • Ueno, K., Hirose, T., Asai, T., & Amemiya, Y. (2009, July). A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 44(7), 2047–2054. https://doi.org/10.1109/JSSC.2009.2021922
  • Wang, Y., Zhu, Z., Yao, J., & Yang, Y. (2015). A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(7), 621–625. https://doi.org/10.1109/TCSII.2015.2415292
  • Wenger, Y., & Meinerzhagen, B. (2019). Low-voltage current and voltage reference design based on the MOSFET ZTC effect. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(9), 3445–3456. https://doi.org/10.1109/TCSI.2019.2925266
  • Zhou, Z., Zhu, P.-S., Shi, Y., Qu, X., Wang, H.-Y., Zhang, X.-M., Qiu, S., Li, N., Gou, C., Wang, Z., & Zhang, B. (2013). A resistorless CMOS voltage reference based on mutual compensation of VT and VTH. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(9), 582–586. https://doi.org/10.1109/TCSII.2013.2268639
  • Zhou, Z. K., Zhu, P. S., Shi, Y., Wang, H. Y., Ma, Y. Q., Xu, X., Tan, L., Ming, X., & Zhang, B. (2012). A CMOS VOLTAGE REFERENCE BASED ON MUTUAL COMPENsation of Vtn and Vtp. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(6), 341–345. https://doi.org/10.1109/TCSII.2012.2195065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.