438
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

High efficiency constant voltage control of LC/S compensated wireless power transfer converter based on pulse density modulation control

&
Pages 54-72 | Received 17 Jun 2021, Accepted 20 Sep 2021, Published online: 28 Nov 2021

References

  • Andrea, D. (2010). Battery management systems for large Lithium-Ion battery packs. Artech House.
  • Cetin, S., & Yenil, V. (2021). Performance evaluation of constant current and constant voltage charge control modes of an inductive power transfer circuit with double-sided inductor-capacitor-capacitor and inductor-capacitor/series compensations for electrical vehicle battery charge applications. Transactions of the Institute of Measurement and Control, 43(8), 1710–1721. https://doi.org/10.1177/0142331220932438
  • Cha, H. R., Kim, R. Y., Park, K. H., & Choi, Y. J. (2019). Modeling and control of double-sided LCC compensation topology with semi-bridgeless active rectifier for inductive power transfer system. Energies, 12(20), 3921. https://doi.org/10.3390/en12203921
  • Chen, M., & Rincon-Mora, G. A. (2006). Accurate, compact, and power-efficient li-ion battery charger circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(11), 1180–1184. https://doi.org/10.1109/TCSII.2006.883220
  • Chen, Q., Wong, S. C., Tse, C. K., & Ruan, X. (2009). Analysis, design, and control of a transcutaneous power regulator for artificial hearts. IEEE Transactions on Biomedical Circuits and Systems, 3(1), 23–31. https://doi.org/10.1109/TBCAS.2008.2006492
  • Colak, K., Asa, E., Bojarski, M., Czarkowski, D., & Onar, O. C. (2015a). A novel phase-shift control of semi bridgeless active rectifier for wireless power transfer. IEEE Transactions on Power Electronics, 30(11), 6288–6297. https://doi.org/10.1109/TPEL.2015.2430832
  • Colak, K., Bojarski, M., Asa, E., & Czarkowski, D . (2015b). A constant resistance analysis and control of cascaded buck and boost converter for wireless EV chargers. IEEE Applied Power Electronics Conference and Exposition (APEC), 1(1), 3157–3161. https://doi.org/10.1109/APEC.2015.7104803
  • Covic, G. A., & Boys, J. T. (2013). Modern trends in inductive power transfer for Transportation Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(1), 28–41. https://doi.org/10.1109/JESTPE.2013.2264473
  • Dearborn, S. (2005). Charging li-ion batteries for maximum run times. Power Electronics Technology Magazine, 31(4), 40–49. https://www.powerelectronics.com/content/article/21855733/charging-liion-batteries-for-maximum-run-times
  • Diekhans, T., & De Doncker, R. W. (2015). A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load. IEEE Transactions on Power Electronics, 30(11), 6320–6328. https://doi.org/10.1109/TPEL.2015.2393912
  • Fan, M., Shi, L., Yin, Z., Jiang, L., & Zhang, F. (2019). Improved pulse density modulation for semi-bridgeless active rectifier in inductive power transfer system. IEEE Transactions on Power Electronics, 34(6), 5893–5902. https://doi.org/10.1109/TPEL.2018.2867902
  • Fan, M., Shi, L., Yin, Z., & Li, Y. (2017). A novel pulse density modulation with semi-bridgeless active rectifier in inductive power transfer system for rail vehicle. CES Transactions on Electrical Machines and Systems, 1(4), 397–404. https://doi.org/10.23919/TEMS.2017.8241361
  • Gurbuz, F., Surgevil, T., & Boztepe, M. (2017). Analysis and design of a secondary-side controlled active rectifier for wireless battery charging application. In 10th international conference on Electrical and Electronics Engineering (ELECO) (pp. 406–410). Bursa.
  • Hou, J., Chen, Q., Wong, S., Tse, C. K., & Ruan, X. (2015). Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 124–136. https://doi.org/10.1109/JESTPE.2014.2336811
  • Huang, Z., Wong, S. C., & Chi, K. T. (2018). Control design for optimizing efficiency in inductive power transfer systems. IEEE Transactions on Power Electronics, 33(5), 4523–4534. https://doi.org/10.1109/TPEL.2017.2724039
  • Huang, Z., Wong, S. C., & Chi, K. T. (2019). An inductive-power-transfer converter with high efficiency throughout battery-charging process. IEEE Transactions on Power Electronics, 34(10), 10245–10255. https://doi.org/10.1109/TPEL.2019.2891754
  • Jang, Y., & Jovanovic, M. M. (2003). A contactless electrical energy transmission system for portable-telephone battery chargers. IEEE Transactions on Industrial Electronics, 50(3), 520–527. https://doi.org/10.1109/TIE.2003.812472
  • Kato, M., Imura, T., & Hori, Y. (2013). Study on maximize efficiency by secondary side control using DC-DC converter in wireless power transfer via magnetic resonant coupling. World Electric Vehicle Symposium and Exhibition (EVS27), 1(1), 1–5. https://doi.org/10.1109/EVS.2013.6915001
  • Keeling, N. A., Covic, G. A., & Boys, J. T. (2010). A unity-power-factor IPT pickup for high-power applications. IEEE Transactions on Industrial Electronics, 57(2), 744–751. https://doi.org/10.1109/TIE.2009.2027255
  • Lee, E. S., Choi, B. G., Choi, J. S., Nguyen, D. T., & Rim, C. T. (2017). Wide-range adaptive IPT using dipole-coils with a reflector by variable switched capacitance. IEEE Transactions on Power Electronics, 32(10), 8054–8070. https://doi.org/10.1109/TPEL.2016.2637931
  • Li, H., Fang, J., Chen, S., Wang, K., & Tang, Y. (2018). Pulse density modulation for maximum efficiency point tracking of wireless power transfer systems. IEEE Transactions on Power Electronics, 33(6), 5492–5501. https://doi.org/10.1109/TPEL.2017.2737883
  • Li, S., Li, W., Deng, J., Nguyen, T. D., & Mi, C. C. (2015). A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Transactions on Vehicular Technology, 64(6), 2261–2273. https://doi.org/10.1109/TVT.2014.2347006
  • Li, S., & Mi, C. C. (2015). Wireless power transfer for electric vehicle applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 4–17. https://doi.org/10.1109/JESTPE.2014.2319453
  • Li, W., Zhao, H., Deng, J., Li, S., & Mi, C. C. (2016). Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers. IEEE Transactions on Vehicular Technology, 65(6), 4429–4439. https://doi.org/10.1109/TVT.2015.2479938
  • Liu, C., Ge, S., Guo, Y., Li, H., & Cai, G. (2016). Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis. IET Power Electronics, 9(11), 2262–2270. https://doi.org/10.1049/iet-pel.2015.0186
  • Miller, J. M., Jones, P. T., Li, J.-M., & Onar, O. C. (2015). ORNL experience and challenges facing dynamic wireless power charging of EV’s. IEEE Circuits and Systems Magazine, 15(2), 40–53. https://doi.org/10.1109/MCAS.2015.2419012
  • Pantic, Z., Bai, S., & Lukic, S. M. (2011). ZCS LCC-compensated resonant inverter for inductive-power-transfer application. IEEE Transactions on Industrial Electronics, 58(8), 3500–3510. https://doi.org/10.1109/TIE.2010.2081954
  • Qu, X., Han, H., Wong, S., Tse, C. K., & Chen, W. (2015). Hybrid IPT topologies with constant current or constant voltage output for battery charging applications. IEEE Transactions on Power Electronics, 30(11), 6329–6337. https://doi.org/10.1109/TPEL.2015.2396471
  • Qu, X., Jing, Y., Han, H., Wong, S., & Tse, C. K. (2017). Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints. IEEE Transactions on Power Electronics, 32(1), 394–405. https://doi.org/10.1109/TPEL.2016.2535376
  • SAE International Standard. (2010). J2954: Wireless charing of electric and plug-in hybrid vehicles. [Online] Available: http://standards.sae.org/wip/j2954/
  • Sallan, J., Villa, J. L., Llombart, A., & Sanz, J. F. (2009). Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Transactions on Industrial Electronics, 56(6), 2140–2149. https://doi.org/10.1109/TIE.2009.2015359
  • Thenathayalan, D., & Park, J. (2015). Wide-air-gap transformer model for the design-oriented analysis of contactless power converters. IEEE Transactions on Industrial Electronics, 62(10), 6345–6359. https://doi.org/10.1109/TIE.2015.2423662
  • Villa, J. L., Sallán, J., Llombart, A., & Sanz, J. F. (2009). Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge. Applied Energy, 86(3), 355–363. https://doi.org/10.1016/j.apenergy.2008.05.009
  • Voglitsis, D., Todorčeviá, T., Prasanth, V., & Bauer, P. (2014). Loss model and control stability of bidirectional LCL-IPT system. 4th International Electric Drives Production Conference (EDPC), 1(1), 1–8. https://doi.org/10.1109/EDPC.2014.6984422
  • Vu, V., Tran, D., & Choi, W. (2018). Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double-sided LCC compensation topology for electric vehicle battery charge applications. IEEE Transactions on Power Electronics, 33(9), 7398–7410. https://doi.org/10.1109/TPEL.2017.2766605
  • Wang, C.-S., Covic, G. A., & Stielau, O. H. (2004). Investigating an LCL load resonant inverter for inductive power transfer applications. IEEE Transactions on Power Electronics, 19(4), 995–1002. https://doi.org/10.1109/TPEL.2004.830098
  • Wang, C.-S., Stielau, O. H., & Covic, G. A. (2005). Design considerations for a contactless electric vehicle battery charger. IEEE Transactions on Industrial Electronics, 52(5), 1308–1314. https://doi.org/10.1109/TIE.2005.855672
  • Wang, Y., Yao, Y., Liu, X., Xu, D., & Cai, L. (2018). An LC/S ompensation topology and coil design technique for wireless power transfer. IEEE Transactions on Power Electronics, 33(3), 2007–2025. https://doi.org/10.1109/TPEL.2017.2698002
  • Xiao, C., Cheng, D., & Wei, K. (2018). An LCC-C compensated wireless charging system for implantable cardiac pacemakers: Theory, experiment, and safety evaluation. IEEE Transactions on Power Electronics, 33(6), 4894–4905. https://doi.org/10.1109/TPEL.2017.2735441
  • Yao, Y., Wang, Y., Liu, X., & Xu, D. (2018). Analysis, design, and optimization of LC/S compensation topology with excellent load-independent voltage output for inductive power transfer. IEEE Transactions on Transportation Electrification, 4(3), 767–777. https://doi.org/10.1109/TTE.2018.2842127
  • Yeo, T. D., Kwon, D., Khang, S. T., & Yu, J. W. (2017). Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank. IEEE Transactions on Power Electronics, 32(1), 471–478. https://doi.org/10.1109/TPEL.2016.2523121
  • Zhang, W., Wong, S., Tse, C. K., & Chen, Q. (2015). Load-independent duality of current and voltage outputs of a series- or parallel-compensated inductive power transfer converter with optimized efficiency. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 137–146. https://doi.org/10.1109/JESTPE.2014.2348558
  • Zheng, C., Lai, J.-S., Chen, R., Faraci, W. E., Ullah Zahid, Z., Gu, B., Zhang, L., Lisi, G., & Anderson, D. (2015). High-efficiency contactless power transfer system for electric vehicle battery charging application. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 65–74. https://doi.org/10.1109/JESTPE.2014.2339279
  • Zhong, W. X., & Hui, S. Y. R. (2015). Maximum energy efficiency tracking for wireless power transfer systems. IEEE Transactions on Power Electronics, 30(7), 4025–4034. https://doi.org/10.1109/TPEL.2014.2351496
  • Zhou, W., & Ma, H. (2007). Design considerations of compensation topologies in ICPT System. APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, 1(1), 985–990. https://doi.org/10.1109/APEX.2007.357634

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.