225
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A low complexity and high modularity design for continuously variable bandwidth digital filters

&
Pages 1594-1613 | Received 06 Mar 2022, Accepted 21 Jul 2022, Published online: 21 Sep 2022

References

  • Ambede, A., Shreejith, S., Vinod, A. P., & Fahmy, S. A. (2015). Design and realization of variable digital filters for software-defined radio channelizers using an improved coefficient decimation method. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(1), 59––63.
  • Ambede, A., Smitha, K. G., & Vinod, A. P. (2012). A modified coefficient decimation method to realize low complexity fir filters with enhanced frequency response flexibility and passband resolution. 2012 35th International conference on telecommunications and signal processing, Prague, Czech Republic , 658–661.
  • Candan, C. (2007). An efficient filtering structure for lagrange interpolation. IEEE Signal Processing Letters, 14(1), 17–19. https://doi.org/10.1109/LSP.2006.881528
  • Darak, S. J., Vinod, A. P., & Lai, E. M. (2012). Design of variable linear phase fir filters based on second order frequency transformations and coefficient decimation. 2012 IEEE International Symposium on Circuits and Systems, Seoul, Korea (South), (ISCAS), IEEE, pp. 3182–3185.
  • Dhabu, S., Ambede, A., Agrawal, N., Smitha, K., Darak, S., & Vinod, A. (2020). Variable cutoff frequency fir filters: A survey. SN Applied Sciences, 2(3), 1–23. https://doi.org/10.1007/s42452-020-2140-6
  • Dhabu, S., & Vinod, A. P. (2017). A new time-domain approach for the design of variable fir filters using the spectral parameter approximation technique. Circuits, Systems, and Signal Processing, 36(5), 2154–2165. https://doi.org/10.1007/s00034-016-0407-3
  • Farrow, C. W. (1988). Continuously variable digital delay element. 1988 IEEE International Symposium on Circuits and Systems, Espoo, Finland, (pp.2641–2645).
  • George, J. T., & Elias, E. (2014). Reconfigurable channel filtering and digital down conversion in optimal csd space for software defined radio. AEU-International Journal of Electronics and Communications, 68(4), 312–321.
  • Haridas, N., & Elias, E. (2017). Low- complexity technique to get arbitrary variation in the bandwidth of a digital fir filter. IET Signal Processing, 11(4), 372–377. https://doi.org/10.1049/iet-spr.2016.0055
  • Harris, F. (2009). Fixed length fir filters with continuously variable bandwidth. 2009 1st International Conference on Wireless Communication,Vehicular Technology,Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, (pp.931–935).
  • Hermanowicz, E. (2006). Designing linear-phase digital differentiators a novel approach. 2006 14th European Signal Processing Conference, Florence, Italy, (pp.1–4).
  • Jarske, P., Neuvo, Y., & Mitra, S. K. (1988). A simple approach to the design of linear phase fir digital filters with variable characteristics. Signal Processing, 14(4), 313–326. https://doi.org/10.1016/0165-1684(88)90090-4
  • Laakso, T. I., Valimaki, V., Karjalainen, M., & Laine, U. K. (1996). Splitting the unit delay [fir/all pass filters design. IEEE Signal Processing Magazine, 13(1), 30–60. https://doi.org/10.1109/79.482137
  • Lee, W. R., Caccetta, L., Teo, K. L., & Rehbock, V. (2006). A unified approach to multi stage frequency response masking filter design using the wls technique. IEEE Transactions on Signal Processing, 54(9), 3459–3467. https://doi.org/10.1109/TSP.2006.877652
  • Lee, H. R., Jen, C. W., & Liu, C. M. (1996). A new hardware-efficient architecture for programmable fir filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43(9), 637–644. https://doi.org/10.1109/82.536760
  • Lim, Y. (1986). Frequency-Response masking approach for the synthesis of sharp linear phase digital filters. IEEE Transactions on Circuits and Systems, 33(4), 357–364. https://doi.org/10.1109/TCS.1986.1085930
  • Mahesh, R., & Vinod, A. P. (2008). Coefficient decimation approach for realizing reconfigurable finite impulse response filters, 2008 IEEE international symposium on circuits and systems, Seattle, WA, USA, (pp.81–84).
  • Mahesh, R., & Vinod, A. P. (2008). Reconfigurable frequency response masking filters for software radio channelization. IEEE Transactions on Circuits and Systems Ii:Express Briefs, 55(3), 274–278.
  • Mahesh, R., & Vinod, A. P. (2011). Low complexity flexible filterbanks for uniform and non-uniform channelisation in software radios using coefficient decimation. IET Circuits, Devices & Systems, 5(3), 232–242. https://doi.org/10.1049/iet-cds.2010.0010
  • Mitra, S., & Hirano, K. (1974). Digital all-pass networks. IEEE Transactions on Circuits and Systems, 21(5), 688–700. https://doi.org/10.1109/TCS.1974.1083908
  • Oppenheim, A., Mecklenbrauker, W., & Mersereau, R. (1976). Variable cutoff linearphase digital filters. IEEE Transactions on Circuits and Systems, 23(4), 199–203.
  • Parvathi, A. K., & Sakthivel, V. (2021). Low complexity reconfigurable modified FRM architecture with full spectral utilization for efficient channelizers. Engineering Science and Technology, an International Journal 28, 101022, .
  • Sakthivel, V., & Elias, E. (2018). Low complexity reconfigurable channelizers using non-uniform filterbanks. Computers & Electrical Engineering, 68, 389–403. https://doi.org/10.1016/j.compeleceng.2018.04.015
  • Smitha, K. G., & Vinod, A. P. (2009). A new low power reconfigurable decimation–interpolation and masking based filter architecture for channel adaptation in cognitive radio handsets. Physical Communications, 1-2(1–2), 47–57. https://doi.org/10.1016/j.phycom.2009.02.003
  • Soontornwong, P., Deng, T. B., & Chivapreecha, S. (2017). Low complexity and high modularity structure for implementing transient-free pascal-delay filter. IEEE Transactions on Signal Processing, 65(23), 6233–6243. https://doi.org/10.1109/TSP.2017.2750117
  • Stoyanov, G., & Kawamata, M. (1997). Variable digital filters. Journal of Signalprocessing, 1(4), 275–289.
  • Sudharman, S., & Bindiya, T. (2018). Design of power efficient variable bandwidth non-maximally decimated frmfilters for wideband channelizer. IEEE Transactions on Circuits and Systems II : Express Briefs, 66(9), 1597–1601.
  • Vaidyanathan, P. P. (2006). Multirate systems and filterbanks. Pearson Education India.
  • Venosa, E., & Palmieri, F. A. (2011). Software radio :Sampling rate selection, design and synchronization. Springer Science & BusinessMedia.
  • Yu, Y. J., Lim, Y. C., & Shi, D. (2008). Low-Complexity design of variable bandedge linear phase fir filters with sharp transition band. IEEE Transactions on Signal Processing, 57(4), 1328–1338.
  • Yu, Y. J., & Xu, W. J. (2011). Mixed-Radix fast filter bank approach for the design of variable digital filters with simultaneously tunable bandedge and fractional delay. IEEE Transactions on Signal Processing, 60(1), 100–111. https://doi.org/10.1109/TSP.2011.2170169
  • Zeineddine, A., Paquelet, S., Nafkha, A., Jezequel, P. Y., & Moy, C. (2019) Efficient arbitrary sample rate conversion for multi-standard digital front-ends 17th International IEEE NEW Circuits and Systems Conference, Munich, Germany.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.