48
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stability analysis of improved combined-mode power converter and power flow control using FPGA

ORCID Icon &
Pages 989-1011 | Received 29 Jan 2022, Accepted 09 Apr 2023, Published online: 15 May 2023

References

  • Abdelsalam, I., Alajmi, B. N., Marei, M. I., & Alhajri, M. F. (2019). Wind energy conversion system based on open-end winding three-phase PMSG coupled with ac− dc buck-boost converter. Journal of Engineering, 2019(17), 4336–4340. https://doi.org/10.1049/joe.2018.8168
  • Ahmed, E. M., & Shoyama, M. (2011). Variable Step Size Maximum Power Point Tracker Using a Single Variable for Stand-alone Battery. Journal of Power Electronics, 11(2), 218–227. https://doi.org/10.6113/JPE.2011.11.2.218
  • Akhilesh, K., and Lakshminarasamma, N. (2018). Control Scheme for Improved Efficiency in an H-bridge Buck-Boost Converter. In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India (pp. 1–6). IEEE.
  • Alargt, F. S., Ashur, A. S., & Kharaz, A. H. (2017). Adaptive delta modulation controller for interleaved buck DC-DC converter. In 2017 52nd International Universities Power Engineering Conference (UPEC), Istanbul, Turkey (pp. 1–6). IEEE.
  • Asy’ari, M. K., & Musyafa, A. (2018). Design of Buck Converter Based on Interval Type-2 Fuzzy Logic Controller. In 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia (pp. 153–156). IEEE.
  • Han, J. K., Kim, J. W., & Moon, G. W. (2017). A high-efficiency asymmetrical half-bridge converter with integrated boost converter in secondary rectifier. IEEE Transactions on Power Electronics, 32(11), 8237–8242. https://doi.org/10.1109/TPEL.2017.2675283
  • Hassan, M. A., Li, E. P., Li, X., Li, T., Duan, C., & Chi, S. (2018). Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(3), 2029–2040. https://doi.org/10.1109/JESTPE.2018.2874449
  • Huang, Q., Huang, A. Q., Yu, R., Liu, P., & Yu, W. (2018). High-efficiency and high-density single-phase dual-mode cascaded buck-boost multilevel transformerless PV inverter with GaN AC switches. IEEE Transactions on Power Electronics, 34(8), 7474–7488. https://doi.org/10.1109/TPEL.2018.2878586
  • International Renewable Energy Agency. (2017) . Electric vehicles-technology brief. International Renewable Energy Agency (IRENA).
  • Kim, S. H., Choi, W. J., Choi, S. W., & Lee, K. B. (2009). Combined dithered sigma-delta modulation-based random PWM switching scheme. Journal of Power Electronics, 9(5), 667–678.
  • Kumar, A., & Sensarma, P. (2016). A four-switch single-stage single-phase buck-boost inverter. IEEE Transactions on Power Electronics, 32(7), 5282–5292. https://doi.org/10.1109/TPEL.2016.2605150
  • Mellit, A., Rezzouk, H., Messai, A., & Medjahed, B. (2011). FPGA-based real-time implementation of MPPT-controller for photovoltaic systems. Renewable Energy, 36(5), 1652–1661. https://doi.org/10.1016/j.renene.2010.11.019
  • Merai, M., Naouar, M. W., Slama-Belkhodja, I., & Monmasson, E. (2018). An adaptive PI controller design for DC-link voltage control of single-phase grid-connected converters. IEEE Transactions on Industrial Electronics, 66(8), 6241–6249. https://doi.org/10.1109/TIE.2018.2871796
  • Meraj, M., Rahman, S., Iqbal, A., & Ben-Brahim, L. (2018). Common mode voltage reduction in a single-phase quasi Z-source inverter for transformerless grid-connected solar PV applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(2), 1352–1363. https://doi.org/10.1109/JESTPE.2018.2867521
  • Naouar, M. W., Hania, B. B., Slama-Belkhodja, I., Monmasson, E., & Naassani, A. A. (2013). FPGA-based sliding mode direct control of single phase PWM boost rectifier. Mathematics and Computers in Simulation, 91, 249–261. https://doi.org/10.1016/j.matcom.2012.05.001
  • Pongiannan, R. K., Sathiyanathan, M., Vinothkumar, U., Junaid, K. M., Prakash, A., & Yadaiah, N. (2015). FPGA–realization of digital PWM controller using Q-format-based signal processing. Journal of Vibration and Control, 21(5), 938–948. https://doi.org/10.1177/1077546313492166
  • Roy, J., Xia, Y., & Ayyanar, R. (2018). High step-up transformerless inverter for AC module applications with active power decoupling. IEEE Transactions on Industrial Electronics, 66(5), 3891–3901. https://doi.org/10.1109/TIE.2018.2860538
  • Sadek, U., Sarjaš, A., Svečko, R., & Chowdhury, A. (2015). FPGA-based control of a DC-DC boost converter. IFAC-Papersonline, 48(10), 22–27. https://doi.org/10.1016/j.ifacol.2015.08.102
  • Sathiyanathan, M., Jaganathan, S., & Josephine, R. L. (2019). Design and analysis of universal power converter for hybrid solar and thermoelectric generators. Journal of Power Electronics, 19(1), 220–233.
  • Sobrino-Manzanares, F., & Garrigos, A. (2018). Bidirectional, interleaved, multiphase, multidevice, soft-switching, FPGA-controlled, buck-boost converter with PWM real-time reconfiguration. IEEE Transactions on Power Electronics, 33(11), 9710–9721. https://doi.org/10.1109/TPEL.2018.2792302
  • VS, B. R., & Devadhas, G. G. (2020). Design and development of new control technique for standalone PV system. Microprocessors and Microsystems, 72, 102888. https://doi.org/10.1016/j.micpro.2019.102888
  • Wang, H., Han, M., Han, R., Guerrero, J. M., & Vasquez, J. C. (2017). A decentralized current-sharing controller endows a fast transient response to parallel DC-DC converters. IEEE Transactions on Power Electronics, 33(5), 4362–4372. https://doi.org/10.1109/TPEL.2017.2714342
  • Wu, F., Fan, S., Li, X., & Luo, S. (2019). Bidirectional Buck-Boost Current-Fed Isolated DC-DC Converter and Its Modulation. IEEE Transactions on Power Electronics, 35(5), 5506–5516. https://doi.org/10.1109/TPEL.2019.2947079
  • Zhang, J., Li, L., Dorrell, D. G., & Guo, Y. (2019). Modified PI controller with improved steady-state performance and comparison with PR controller on direct matrix converters. Chinese Journal of Electrical Engineering, 5(1), 53–66. https://doi.org/10.23919/CJEE.2019.000006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.