29
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Application of stochastic filter to three-phase nonuniform transmission lines

ORCID Icon & ORCID Icon
Pages 1495-1516 | Received 31 Jul 2022, Accepted 31 May 2023, Published online: 28 Jul 2023

References

  • Alvarez, D. L., da Silva, F. F., Mombello, E. E., Bak, C. L., & Rosero, J. A. (2018). Conductor temperature estimation and prediction at thermal transient state in dynamic line rating application. IEEE Transactions on Power Delivery, 33(5), 2236–2245. https://doi.org/10.1109/TPWRD.2018.2831080
  • Aminifar, F., Shahidehpour, M., Fotuhi-Firuzabad, M., & Kamalinia, S. (2013). Power system dynamic state estimation with synchronized phasor measurements. IEEE Transactions on Instrumentation and Measurement, 63(2), 352–363. https://doi.org/10.1109/TIM.2013.2278595
  • Ancell, G. B., & Pahalawaththa, N. C. (1994). Maximum likelihood estimation of fault location on transmission lines using travelling waves. IEEE Transactions on Power Delivery, 9(2), 680–689. https://doi.org/10.1109/61.296245
  • Bendjabeur, A., Kouadri, A., & Mekhilef, S. (2020). Novel technique for transmission line parameters estimation using synchronised sampled data. IET Generation, Transmission & Distribution, 14(3), 506–515. https://doi.org/10.1049/iet-gtd.2019.0702
  • Chen, T., Cao, Y., Chen, X., Sun, L., Zhang, J., & Amaratunga, G. A. (2020). A distributed maximum-likelihood-based state estimation approach for power systems. IEEE Transactions on Instrumentation and Measurement, 70, 1–10. https://doi.org/10.1109/TIM.2020.2991573
  • Chowdhury, F. N., Christensen, J. P., & Aravena, J. L. (1991). Power system fault detection and state estimation using Kalman filter with hypothesis testing. IEEE Transactions on Power Delivery, 6(3), 1025–1030. https://doi.org/10.1109/61.85843
  • Corti, L., de Magistris, M., & Maffucci, A. (2001). Dual formulations for error estimation in non-uniform transmission lines. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 20(4), 1045–1054. https://doi.org/10.1108/EUM0000000005768
  • Gad, E., & Nakhla, M. (2005). An efficient algorithm for sensitivity analysis of nonuniform transmission lines. IEEE Transactions on Advanced Packaging, 28(2), 197–208. https://doi.org/10.1109/TADVP.2005.846930
  • Gholami, M., Abbaspour, A., Moeini-Aghtaie, M., Fotuhi-Firuzabad, M., & Lehtonen, M. (2019). Detecting the location of short-circuit faults in active distribution network using PMU-based state estimation. IEEE Transactions on Smart Grid, 11(2), 1396–1406. https://doi.org/10.1109/TSG.2019.2937944
  • Gustavsen, B. (2002). Frequency-dependent transmission line modeling utilizing transposed conditions. IEEE Transactions on Power Delivery, 17(3), 834–839. https://doi.org/10.1109/TPWRD.2002.1022812
  • Hu, Q., Fooladivanda, D., Chang, Y. H., & Tomlin, C. J. (2017). Secure state estimation and control for cyber security of the nonlinear power systems. IEEE Transactions on Control of Network Systems, 5(3), 1310–1321. https://doi.org/10.1109/TCNS.2017.2704434
  • Jiang, J. A., Yang, J. Z., Lin, Y. H., Liu, C. W., & Ma, J. C. (2000). An adaptive PMU based fault detection/location technique for transmission lines. I. theory and algorithms. IEEE Transactions on Power Delivery, 15(2), 486–493. https://doi.org/10.1109/61.852973
  • Khalaj-Amirhosseini, M. (2006a). Analysis of coupled nonuniform transmission lines using Taylor’s series expansion. IEEE Transactions on Electromagnetic Compatibility, 48(3), 594–600. https://doi.org/10.1109/TEMC.2006.879340
  • Khalaj-Amirhosseini, M. (2006b). Closed form solutions for nonuniform transmission lines. Progress in Electromagnetics Research B, 60, 107–117. https://doi.org/10.2528/PIER05101901
  • Khalaj-Amirhosseini, M. (2008). Closed form solutions for nonuniform transmission lines. Progress in Electromagnetics Research B, 2, 243–258. https://doi.org/10.2528/PIERB07111502
  • Khanna, K., Panigrahi, B. K., & Joshi, A. (2019). Priority-based protection against the malicious data injection attacks on state estimation. IEEE Systems Journal, 14(2), 1945–1952. https://doi.org/10.1109/JSYST.2019.2933023
  • Kumar, L., Pandey, V. S., Parthasarathy, H., & Shrimali, V. (2018). Hysteresis effects on a non-uniform transmission line with induced quantum mechanical atomic transitions. Journal of Superconductivity and Novel Magnetism, 31(5), 1587–1605. https://doi.org/10.1007/s10948-017-4368-y
  • Li, B., Ding, T., Huang, C., Zhao, J., Yang, Y., & Chen, Y. (2018). Detecting false data injection attacks against power system state estimation with fast go-decomposition approach. IEEE Transactions on Industrial Informatics, 15(5), 2892–2904. https://doi.org/10.1109/TII.2018.2875529
  • Liang, J., Sankar, L., & Kosut, O. (2015). Vulnerability analysis and consequences of false data injection attack on power system state estimation. IEEE Transactions on Power Systems, 31(5), 3864–3872. https://doi.org/10.1109/TPWRS.2015.2504950
  • Mosbah, H., & El-Hawary, M. E. (2018). Optimized neural network parameters using stochastic fractal technique to compensate Kalman filter for power system-tracking-state estimation. IEEE Transactions on Neural Networks and Learning Systems, 30(2), 379–388. https://doi.org/10.1109/TNNLS.2018.2839101
  • Pereira, R. F., Albuquerque, F. P., Liboni, L. H. B., Costa, E. C. M., & Monteiro, J. H. A. (2023). Estimation of the electrical parameters of overhead transmission lines using Kalman filtering with particle swarm optimization. IET Generation, Transmission & Distribution, 17(1), 27–38. https://doi.org/10.1049/gtd2.12661
  • Regalia, P. A., & Sanjit, M. K. (1989). Kronecker products, unitary matrices and signal processing applications. SIAM Review, 31(4), 586–613. https://doi.org/10.1137/1031127
  • Tang, M., & Mao, J. (2008). A precise time-step integration method for transient analysis of lossy nonuniform transmission lines. IEEE Transactions on Electromagnetic Compatibility, 50(1), 166–174. https://doi.org/10.1109/TEMC.2007.913222
  • Varghese, A. C., Pal, A., & Dasarathy, G. (2022). Transmission line parameter estimation under non-Gaussian measurement noise. IEEE Transactions on Power Systems, 27–38. https://doi.org/10.1109/TPWRS.2022.3204232
  • Wang, G., Giannakis, G. B., & Chen, J. (2019). Robust and scalable power system state estimation via composite optimization. IEEE Transactions on Smart Grid, 10(6), 6137–6147. https://doi.org/10.1109/TSG.2019.2897100
  • Wehenkel, A., Mukhopadhyay, A., Le Boudec, J. Y., & Paolone, M. (2020). Parameter estimation of three-phase untransposed short transmission lines from synchrophasor measurements. IEEE Transactions on Instrumentation and Measurement, 69(9), 6143–6154. https://doi.org/10.1109/TIM.2020.2969059
  • Xu, Q., & Mazumder, P. (2002). Accurate modeling of lossy nonuniform transmission lines by using differential quadrature methods. IEEE Transactions on Microwave Theory and Techniques, 50(10), 2233–2246. https://doi.org/10.1109/TMTT.2002.803440
  • Zhang, F., Liu, G., Fang, L., & Wang, H. (2011). Estimation of battery state of charge with H∞ observer: Applied to a robot for inspecting power transmission lines. IEEE Transactions on Industrial Electronics, 59(2), 1086–1095. https://doi.org/10.1109/TIE.2011.2159691
  • Zhang, Y., Liao, C., Huan, R., Shang, Y., & Zhou, H. (2020). Analysis of nonuniform transmission lines with a perturbation technique in time domain. IEEE Transactions on Electromagnetic Compatibility, 62(2), 542–548. https://doi.org/10.1109/TEMC.2019.2906251

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.