106
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An improved PWM with simplified unified switched logic (USL) for RSC MLIs

, ORCID Icon &
Pages 1517-1540 | Received 25 Aug 2022, Accepted 30 May 2023, Published online: 17 Jul 2023

References

  • Alishah, R. S., Nazarpour, D., Hosseini, S. H., & Sabahi, M. (2015, January). Reduction of power electronic elements in multilevel converters using a new cascade structure. IEEE Transactions on Industrial Electronics, 62(1), 256–269. https://doi.org/10.1109/TIE.2014.2331012
  • Babaei, E. (2008, November). A cascade multilevel converter topology with reduced number of switches. IEEE Transactions on Power Electronics, 23(6), 2657–2664. https://doi.org/10.1109/TPEL.2008.2005192
  • Babaei, E., & Gowgani, S. S. (2014, September). Hybrid multilevel inverter using switched capacitor units. IEEE Transactions on Industrial Electronics, 61(9), 4614–4621. https://doi.org/10.1109/TIE.2013.2290769
  • Babaei, E., Kangarlu, M. F., & Hosseinzadeh, M. A. (2013, July). Asymmetrical multilevel converter topology with reduced number of components. IET Power Electronics, 6(6), 1188–1196. https://doi.org/10.1049/iet-pel.2012.0497
  • Babaei, E., Laali, S., & Bayat, Z. (2015, February). A single-phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches. IEEE Transactions on Industrial Electronics, 62(2), 922–929. https://doi.org/10.1109/TIE.2014.2336601
  • Barzegarkhoo, R., Zamiri, E., Vosoughi, N., Kojabadi, H. M., & Chang, L. (2016, August). Cascaded multilevel inverter using series connection of novel capacitor-based units with minimum switch count. IET Power Electronics, 9(10), 2060–2075. https://doi.org/10.1049/iet-pel.2015.0956
  • Ceglia, G., Guzman, V., Sanchez, C., Ibanez, F., Walter, J., & Gimenez, M. I. (2006). A new simplified multilevel inverter topology for DC–AC conversion. IEEE Transactions on Power Electronics, 21(5), 1311–1319. https://doi.org/10.1109/TPEL.2006.880303
  • Choi, U. M., Blaabjerg, F., & Lee, K. B. (2015, May). Reliability Improvement of a T-Type Three-Level Inverter with Fault-Tolerant Control Strategy. IEEE Transactions on Power Electronics, 30(5), 2660–2673. https://doi.org/10.1109/TPEL.2014.2325891
  • Choi, J.-S., & Kang, F.-S. (2015, June). Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source. IEEE Transactions on Industrial Electronics, 62(6), 3448–3459. https://doi.org/10.1109/TIE.2014.2370948
  • Choi, W. K. and Kang, F. S. (2009, October). H-bridge based multilevel inverter using PWM switching function. In 31st International Conference on Telecommunications Energy, INTELEC 2009. Incheon, Korea (South). (pp.1–5). https://doi.org/10.1109/INTLEC.2009.5351886.
  • dos Santos, E. C., Muniz, J. H. G., da Silva, E. R. C., & Jacobina, C. B. (2015, August). Nested multilevel topologies. IEEE Transactions on Power Electronics, 30(8), 4058–4068. https://doi.org/10.1109/TPEL.2014.2351392
  • Franquelo, L. G., Rodriguez, J., Leon, J., Kouro, S., Portillo, R., & Prats, M. (2008). The age of multilevel converters arrives. IEEE Industrial Electronics Magazine, 2(2), 28–39. https://doi.org/10.1109/MIE.2008.923519
  • Gautam, S. P., Kumar, L., & Gupta, S. (2015, November). Hybrid topology of symmetrical multilevel inverter using less number of devices. IET Power Electronics, 8(11), 2125–2135. https://doi.org/10.1049/iet-pel.2015.0037
  • Gautam, S. P., Sahu, L. K., & Gupta, S. (2016, March). Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electronics, 9(4), 698–709. https://doi.org/10.1049/iet-pel.2015.0176
  • Goel, R., Davis, T. T., & Dey, A. J. I. T. O. I. A. (2022). Thirteen level multilevel inverter structure having single DC source and reduced device count. IEEE Transactions on Industry Applications, 58(4), 4932–4942. https://doi.org/10.1109/TIA.2022.3172893
  • Gupta, K. K., & Jain, S. (2014, July). A novel multilevel inverter based on switched DC sources. IEEE Transactions on Industrial Electronics, 61(7), 3269–3278. https://doi.org/10.1109/TIE.2013.2282606
  • Gupta, K. K., Ranjan, A., Bhatnagar, P., Sahu, L. K., & Jain, S. (2015). Multilevel inverter topologies with reduced device count: A review. IEEE Transactions on Power Electronics, 31(1), 135–151. https://doi.org/10.1109/TPEL.2015.2405012
  • Hinago, Y., & Koizumi, H. (2010, August). A single-phase multilevel inverter using switched series/parallel dc voltage sources. IEEE Transactions on Industrial Electronics, 57(8), 2643–2650. https://doi.org/10.1109/TIE.2009.2030204
  • Hinago, Y., & Koizumi, H. (2012, February). A switched-capacitor inverter using series/parallel conversion with inductive load. IEEE Transactions on Industrial Electronics, 59(2), 878–887. https://doi.org/10.1109/TIE.2011.2158768
  • Jakkula, S., Jayaram, N., Pulavarthi, S. V. K., Shankar, Y. R., & Rajesh, J. (2022). A generalized high gain multilevel inverter for small scale solar photovoltaic applications. IEEE Access, 10, 25175–25189. https://doi.org/10.1109/ACCESS.2022.3152771
  • Kishore, P. S. V., Jayaram, N., Jakkula, S., Sankar, Y. R., Rajesh, J., & Halder, S. (2022). A new reduced switch seven-level triple boost switched capacitor based inverter. IEEE Access, 10, 73931–73944. https://doi.org/10.1109/ACCESS.2022.3190546
  • Kouro, S., Malinowski, M., Gopakumar, K., Pou, J., Franquelo, L. G., Wu, B., Rodriguez, J., Pérez, M. A., & Leon, J. I. (2010). Recent advances and industrial applications of multilevel converters. IEEE Transactions on Industrial Electronics, 57(8), 2553–2580. https://doi.org/10.1109/TIE.2010.2049719
  • Li, L., Czarkowski, D., Liu, Y., & Pillay, P. (2000). Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters. IEEE Transactions on Industry Applications, 36(1), 160–170. https://doi.org/10.1109/28.821811
  • Malinowski, M., Gopakumar, K., Rodriguez, J., & Pérez, M. A. (2009). A survey on cascaded multilevel inverters. IEEE Transactions on Industrial Electronics, 57(7), 2197–2206. https://doi.org/10.1109/TIE.2009.2030767
  • Masaoud, A., Ping, H. W., Mekhilef, S., & Taallah, A. (2014, December). Novel configuration for multilevel DC-link three-phase five-level inverter. IET Power Electronics, 7(12), 3052–3061. https://doi.org/10.1049/iet-pel.2013.0812
  • Masaoud, A., Ping, H. W., Mekhilef, S., & Taallah, A. S. (2014, November). New three-phase multilevel inverter with reduced number of power electronic components. IEEE Transactions on Power Electronics, 29(11), 6018–6029. https://doi.org/10.1109/TPEL.2014.2298616
  • McGrath, B. P., & Holmes, D. G. (2002). Multicarrier PWM strategies for multilevel inverters. IEEE Transactions on Industrial Electronics, 49(4), 858–867. https://doi.org/10.1109/TIE.2002.801073
  • Naderi, R., & Rahmati, A. (2008). Phase-shifted carrier PWM technique for general cascaded inverters. IEEE Transactions on Power Electronics, 23(3), 1257–1269. https://doi.org/10.1109/TPEL.2008.921186
  • Najafi, E., & Yatim, A. H. M. (2012, November). Design and implementation of a new multilevel inverter topology. IEEE Transactions on Industrial Electronics, 59(11), 4148–4154. https://doi.org/10.1109/TIE.2011.2176691
  • Odeh, C. I. (2014, April). A cascaded multi-level inverter topology with improved modulation scheme. Electric Power Components & Systems, 42(7), 768–777. https://doi.org/10.1080/15325008.2014.890974
  • Odeh, C. I., Obe, E. S., & Ojo, O. (2016, April). Topology for cascaded multilevel inverter. IET Power Electronics, 9(5), 921–929. https://doi.org/10.1049/iet-pel.2015.0375
  • Omer, P., Kumar, J., & Surjan, B. S. (2020). A Review on Reduced Switch Count Multilevel Inverter Topologies. IEEE Access, 8, 22281–22302. https://doi.org/10.1109/ACCESS.2020.2969551
  • Park, S.-J., Kang, F.-S., Hyung Lee, M., & Kim, C.-U. (2003, May). A new single-phase five-level PWM inverter employing a deadbeat control scheme. IEEE Transactions on Power Electronics, 18(3), 831–843. https://doi.org/10.1109/TPEL.2003.810837
  • Peddapati, S. J. I. T. O. P. E., & Prasadarao, K. V. S. (2022). A new fault-tolerant multilevel inverter structure with reduced device count and low total standing voltage. IEEE Transactions on Power Electronics, 37(7), 8333–8344. https://doi.org/10.1109/TPEL.2022.3149531
  • Rahim, N. A., Chaniago, K., & Selvaraj, J. (2011, June). Single-phase seven-level grid-connected inverter for photovoltaic system. IEEE Transactions on Industrial Electronics, 58(6), 2435–2443. https://doi.org/10.1109/TIE.2010.2064278
  • Rahim, N. A., Elias, M. F. M., & Hew, W. P. (2013, August). Transistor-clamped H-bridge based cascaded multilevel inverter with new method of capacitor voltage balancing. IEEE Transactions on Industrial Electronics, 60(8), 2943–2956. https://doi.org/10.1109/TIE.2012.2200213
  • Rech, C., & Pinheiro, J. R. (2007). Hybrid multilevel converters: Unified analysis and design considerations. IEEE Transactions on Industrial Electronics, 54(2), 1092–1104. https://doi.org/10.1109/TIE.2007.892255
  • Rech, C., & Pinheiro, J. R. J. I. T. O. I. E. (2007). Hybrid multilevel converters: Unified analysis and design considerations. IEEE Transactions on Industrial Electronics, 54(2), 1092–1104. https://doi.org/10.1109/TIE.2007.892255
  • Salem, A., Ahmed, E. M., Orabi, M., & Ahmed, M. (2015, September). New three-phase symmetrical multilevel voltage source inverter. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(3), 430–442. https://doi.org/10.1109/JETCAS.2015.2462173
  • Salem, A., Van Khang, H., Jiya, I. N., & Robbersmyr, K. G. (2022). Hybrid three-phase transformer-based multilevel inverter with reduced component count. IEEE Access, 10, 47754–47763. https://doi.org/10.1109/ACCESS.2022.3171849
  • Sanjeevan, A. R., Kaarthik, R. S., Gopakumar, K., Rajeevan, P. P., Leon, J. I., & Franquelo, L. G. (2016, March). Reduced common-mode voltage operation of a new seven-level hybrid multilevel inverter topology with a single DC voltage source. IET Power Electronics, 9(3), 519–528. https://doi.org/10.1049/iet-pel.2015.0130
  • Singh, A. K., Raushan, R., Mandal, R. K., & Ahmad, M. W. (2022). A new single-source Nine-Level Quadruple Boost Inverter (NQBI) for PV application. IEEE Access, 10, 36246–36253. https://doi.org/10.1109/ACCESS.2022.3163262
  • Sreenivasarao, D., Agarwal, P., & Das, B. (2013). Performance evaluation of carrier rotation strategy in level-shifted pulse-width modulation technique. IET Power Electronics, 7(3), 667–680. https://doi.org/10.1049/iet-pel.2013.0109
  • Su, G.-J. (2005). Multilevel DC-link inverter. IEEE Transactions on Industry Applications, 41(3), 848–854. https://doi.org/10.1109/TIA.2005.847306
  • Varesi, K., Esmaeili, F., Deliri, S., & Tarzamni, H. (2022). Single-input quadruple-boosting switched-capacitor nine-level inverter with self-balanced capacitors. IEEE Access, 10, 70350–70361. https://doi.org/10.1109/ACCESS.2022.3187005
  • Vemuganti, H. P., Sreenivasarao, D., Ganjikunta, S. K., Suryawanshi, H. M., & Abu-Rub, H. (2021). A survey on reduced switch count multilevel inverters. IEEE Open Journal of the Industrial Electronics Society, 2, 80–111. https://doi.org/10.1109/OJIES.2021.3050214
  • Vemuganti, H. P., Sreenivasarao, D., Siva Kumar, G., & Sai Spandana, A. (2018). Reduced carrier PWM scheme with unified logical expressions for reduced switch count multilevel inverters. IET Power Electronics, 11(5), 912–921. https://doi.org/10.1049/iet-pel.2017.0586
  • Vijayaraja, L., Kumar, S. G., and Rivera, M. A review on multilevel inverter with reduced switch count. in 2016 IEEE International Conference on Automatica (ICA-ACCA). 2016. Curico, Chile. (pp.1–5). IEEE. https://doi.org/10.1109/ICA-ACCA.2016.7778467
  • Wu, B. (2006). High-power converters and AC drives. IEEE Press. https://doi.org/10.1002/0471773719
  • Wu, M., Li, Y. W., & Konstantinou, G. J. I. T. O. P. E. (2020). A comprehensive review of capacitor voltage balancing strategies for multilevel converters under selective harmonic elimination PWM. IEEE Transactions on Power Electronics, 36(3), 2748–2767. https://doi.org/10.1109/TPEL.2020.3012915
  • Zhao, J., Chen, Y., Zeng, J., & Liu, J. (2022). A hybrid nine-level inverter with reduced components and simplified control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), 4498–4508. https://doi.org/10.1109/JESTPE.2022.3152994

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.