295
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Factors which facilitate waste water treatment by aquatic weeds – the mechanism of the weeds’ purifying action

&
Pages 349-371 | Received 20 Apr 2009, Published online: 23 Jun 2010

References

  • Abbasi , S.A. 1987 . “ Aquatic plants based water treatment systems in Asia ” . In Aquatic Plants for Water Treatment and Resource Recovery , Edited by: Reddy , K.R. and Smith , W.H. 175 – 198 . Orlando, FL : Magnolia Publishing .
  • Ganasan , V. and Hughes , R.M. 1998 . Application of an index of biological integrity (IBI) to fish assemblages of the rivers Kahn and Kshipra (Madhya Pradesh) . Freshwater Biology , 40 : 367 – 383 .
  • Abbasi , S.A. and Ramasamy , E.V. 1999 . Biotechnological Methods of Pollution Control , 1 – 168 . Orient, Harlow : Longmans/UPIL .
  • Brix , B. and Arias , C.A. 2005 . The use of vertical flow constructed wetlands for on‐site treatment of domestic wastewater: new Danish guidelines . Ecological Engineering , 25 : 491 – 500 .
  • Crites , R.W. , Middlebrooks , E.J. and Reed , S.C. 2006 . Natural Wastewater Treatment Systems , 1 – 552 . Boca Raton, FL : CRC Press .
  • Srivastava , J. , Gupta , A. and Chandra , H. 2008 . Managing water quality with aquatic macrophytes . Reviews in Environmental Science and Biotechnology , 7 : 255 – 266 .
  • Vymazal , J. and Kröpfelová , L. 2008 . Wastewater Treatment in Constructed Wetlands with Horizontal Sub‐surface Flow , 1 – 566 . Dordrecht : Springer .
  • Ottova , V. , Balcarova , J. and Vymazal , J. 1997 . Microbial characteristics of constructed wetlands . Water Science and Technology , 30 (5) : 117 – 124 .
  • Brix , H. 1997 . Do macrophytes play a role in constructed treatment wetlands? . Water Science and Technology , 35 (5) : 11 – 17 .
  • Garcia , M. , Becares , E. and Soto , F. Are bacterial removal efficiencies enhanced by plants? An experimental study using Scirpus lacustris . In Sixth International Conference on Waste Stabilisation Ponds and 9th International Conference on Wetland Systems . September–1 October 26 , Avignon, France.
  • Schroder , P. , Navarroavubi , J. , Azaizeh , H. , Goldhirsh , A.G. , DaiGregorio , S. , Komives , T. , Langergraber , G. , Elena Maestri , A. , Abdul , R. Memon , Ranalli , A. , Sebastiani , L. , Smrcek , S. , Vanek , T. , Vuilleumier , S. and Wissing , F. 2006 . “ Using phytoremediation technologies to upgrade waste water treatment in Europe ” . In Environmental Science Pollution Research DOI:[http://dx.doi.org/10.1065/espr2006.12.373]
  • Haber , R. , Grego , S. , Langergraber , G. , Kadlec , R.H. , Cicalini , A.‐R. , Martins Dias , S. , Novais , J.M. , Aubert , S. , Gerth , A. , Thomas , H. and Hebner , A. 2003 . Constructed wetlands for the treatment of organic pollutants . Journal of Soils and Sediments , 3 (2) : 109 – 124 .
  • Schroder , P. , Meier , H. and Debus , R. 2005 . Detoxification of herbicides in Pvragmites australis . Zeitschrift für Naturforschung , 60c : 317 – 324 .
  • Gopal , B.Y. and Goel , U. 1993 . Competition and allelophaty in aquatic plants communities . The Botanical Review , 59 : 155 – 210 .
  • Kadlec , R.H. and Knight , R.L. 1996 . Treatment Wetlands , Boca Raton, FL : Lewis Publishers, CRC Press .
  • Dubois , J.P. 1994 . Uptake of macroelements by the helophyte . Phalaris arundinacea L. Aquatic Science , 56 : 70 – 79 .
  • Aoyama , I. and Nishizaki . 1993 . Uptake of nitrogen and phosphate, and water purification by water Hyacinth (Eichhornia crassipes) (Mart) Solms . Water Science and Technology , 28 : 47 – 53 .
  • Abbasi , T. , Gajalakshmi , S. and Abbasi , S.A. 2009 . Energy production by anaerobic digestion of phytomass‐new prospects for a global warning amelioration technology. Will it ever be realized? . International Journal of Environmental Studies ,
  • Gajalakshmi , S. , Ramasamy , E.V. and Abbasi , S.A. 2001 . Assessment of sustainable vermiconversion of water hyacinth at different reactor efficiencies employing Eudrilus eugeniae Kinberg . Bioresource Technology , 80 (2) : 131 – 135 .
  • Gajalakshmi , S. , Ramasamy , E.V. and Abbasi , S.A. 2001 . Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth . Bioresource Technology , 76 (3) : 177 – 181 .
  • Gajalakshmi , S. , Ramasamy , E.V. and Abbasi , S.A. 2002 . High‐rate composting‐vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms) . Bioresource Technology , 83 (3) : 235 – 239 .
  • Gajalakshmi , S. and Abbasi , S.A. 2004 . Earthworms and vermicomposting . Indian Journal of Biotechnology , 3 (4) : 486 – 494 .
  • Reddy , K.R. and Tucker , J.C. 1983 . Productivity and nutrient uptake of water hyacinth. Eichhornia crassipes. I. Effect of nitrogen source . Economic Botany , 37 : 237
  • Abbasi , S.A. and Nipaney , P.C. 1985 . Wastewater treatment using aquatic plants. Survivability and growth of Salvinia molesta (Mitchell) over waters treated with zinc (II) and the subsequent utilization of the harvested weeds for energy (biogas) production . Resources and Conservation , 12 (1) : 47 – 55 .
  • Abbasi , S.A. and Nipaney , P.C. 1986 . Aquatic fern of the genus Salvinia: its infestation and control . Environmental Conservation , 13 : 235 – 241 .
  • Abbasi , S.A. and Nipaney , P.C. 1994 . Potential of aquatic weed Salvinia molesta (Mitchell) for water treatment and energy recovery . Indian Journal of Chemical Technology , 1 : 204 – 213 .
  • Cooley , T.N. , Martin , D.F. , Durden , W.C. and Perkins , B.D. 1979 . A preliminary study of metal distribution in three water hyacinth biotypes . Water Research , 13 : 343 – 348 .
  • Garg , P. and Chandra , P. 1994 . The duckweed (Wolffia globosa) as an indicator of heavy metal pollution . Environmental Monitoring and Assessment , 29 : 89 – 95 .
  • Muramto , S. and Oki , Y. 1983 . Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes) . Bulletin of Environmental Contamination and Toxicology , 30 : 170 – 177 .
  • Tatsuyama , K. , Egwa , H. , Yamamoto , H. and Nahamura , M. 1977 . Sorption of heavy metals by the water‐hyacinth from the metal solutions (II) some experimental conditions influencing the sorption . Weed Research Japan , 22 : 251 – 256 .
  • Abbasi , S.A. and Soni , R. 1983 . Stress‐induced enhancement of reproduction in earthworm Octochaetus pattoni exposed to chromium (VI) and mercury (II): implications in environmental management . International Journal of Environmental Studies , 22 (1) : 43 – 47 .
  • Abbasi , S.A. and Soni , R. 1984 . Teratogenic effects of chromium (VI) in environment as evidenced by the impact on larvae of amphibian Rana tigrina: implications in the environmental management of chromium . International Journal of Environmental Studies , 23 (2) : 131 – 137 .
  • Nor , Y.M. 1994 . Phenol removal by Eichhornia crassipes in the presence of trace metals . Water Research , 28 : 1161 – 1166 .
  • USEPA . 2002 . “ United States Environmental Protection Agency, Effluent Guidelines and Standards ” . Sub‐Chapter N, Parts 400–424
  • Mishra , V.K. , Upadhyaya , A.R. , Pandey , S.K. and Tripathi , B.D. 2008 . Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes . Bioresource Technology , 99 : 930 – 936 .
  • Mishra , V.K. and Tripathi , B.D. 2009 . Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes) . Journal of Hazardous Materials , 164 : 1059 – 1063 .
  • Khan , F.I. and Abbasi , S.A. 1997 . Risk analysis of a chloralkali industry situated in a populated area using the software package MAXCRED‐II . Process Safety Progress , 16 (3) : 172 – 184 .
  • Khan , F.I. and Abbasi , S.A. 1999 . Assessment of risks posed by chemical industries: application of a new computer automated tool MAXCRED‐III . Journal of Loss Prevention in the Process Industries , 12 (6) : 455 – 469 .
  • Boyd , C.E. and Hess , L.W. 1970 . Factors influencing shoot production and mineral nutrient levels in . Typha latifolia. Ecology , 51 : 296 – 300 .
  • Cary , R.P. and Weerts , P.G. 1984 . Growth and nutrient composition of Typha orientalis as affected by water temperature and nitrogen and phosphorus supply . Aquatic Botany , 19 : 105 – 118 .
  • Ulrich , K.E. and Burton , T.M. 1985 . The effects of nitrate, phosphate, and potassium fertilization on growth and nutrient uptake patterns of Phragmites australis . Aquatic Botany , 21 : 53 – 62 .
  • Reddy , K.R. and Portier , K.M. 1987 . Nitrogen utilization by Typha latifolia L. as affected by temperature and rate of nitrogen utilization . Aquatic Botany , 27 : 127 – 138 .
  • Bonnewell , V. and Pratt , D.C. 1978 . Effects of nutrients on productivity and morphology of Typha and Gustifoliz latifolia . Minnesota Academy of Sciences , 44 : 18 – 20 .
  • Ramasamy , E.V. , Gajalakshmi , S. , Sanjeevi , R. , Jithesh , M.N. and Abbasi , S.A. 2004 . Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors . Bioresource Technology , 93 (2) : 209 – 212 .
  • Weisner , S.E.B. , Eriksson , P.G. , Graneli , W. and Leonardson , L. 1994 . Influence of macrophytes on nitrogen removal in wetlands . Ambio , 23 : 363 – 366 .
  • Bindu , T. , Sylas , V.P. , Mahesh , M. , Rakesh , P.S. and Ramasamy , E.V. 2008 . Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system . Ecological Engineering , 33 : 1 – 68 .
  • Reddy , K.R. and DeBusk , W.F. 1984 . Growth characteristics of aquatic macrophytes cultured in nutrient‐enriched water. I. Water hyacinth, water lettuce and pennywort . Economic Botany , 38 : 229 – 239 .
  • Howes , B.L. and Teal , J.M. 1994 . Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance . Oecologia , 97 : 431 – 438 .
  • Sagova , M. , Adams , M.S. and Butler , M.G. 1993 . Relationship between plant roots and benthic animals in three sediment types of a dimictic mesotrophic lakes . Archiv Fur Hydrobiologie , 128 : 423 – 436 .
  • Flessa , H. 1994 . Plant‐induced changes in the redox potential of rhizospheres of the submerged vascular macrophytes . Myriophyllum verticillatum L. and Ranunculus Circinatus L. Aquatic Botany , 47 : 119 – 129 .
  • Wu , M. , Franz , E.H. and Chen , S. 2001 . Oxygen fluxes and ammonia removal efficiencies in constructed treatment wetlands . Water Environmental Research , 73 : 661 – 666 .
  • Lawson , G.J. 1985 . Cultivating reeds (Phragmites australis) for Root Zone Treatment of Sewage. , Contract Report ITE, 965th edition , Cumbria, , UK : Water Research Centre .
  • Brix , H. 1990 . Gas exchange through the soil‐atmosphere interface and through dead culms of Phragmites australis in a constructed wetland receiving domestic sewage . Water Research , 24 : 259 – 266 .
  • Brix , H. and Schierup , H.H. 1990 . “ Soil oxygenation in constructed reed beds: the role of macrophyte and soil‐atmosphere interface oxygen transport ” . In Constructed Wetlands in Water Pollution Control , Edited by: Cooper , P.F. and Findlater , B.C. 53 – 66 . Oxford : Pergamon Press .
  • Gries , C. , Kappen , L. and Lösch , R. 1990 . Mechanism of flood tolerance in reed. Phragmites australis (Cav.) Trin. ex Steudel . New Phytologist , 114 : 589 – 593 .
  • Armstrong , W. , Armstrong , J. and Beckett , P.M. 1990 . “ Measurement and modelling of oxygen release from roots of Phragmites australis ” . In Constructed Wetlands in Water Pollution Control , Edited by: Cooper , P.F. and Findlater , B.C. 41 – 51 . Oxford : Pergamon Press .
  • Sand‐Jensen , K. , Prahl , C. and Stokholm , H. 1982 . Oxygen release from roots of submerged aquatic macrophytes . Oikos , 38 : 349 – 354 .
  • Kemp , W.M. and Murray , L. 1986 . Oxygen release from roots of the submersed macrophyte Potamogeton perfoliatus L. Regulating factors and ecological implications . Aquatic Botany , 26 : 271 – 283 .
  • Caffrey , J.M. and Kemp , W.M. 1991 . Seasonal and spatial patterns of oxygen production, respiration and root‐rhizome release in Potamogeton perfoliatus L. and Zostera marina L . Aquatic Botany , 40 : 109 – 128 .
  • Moorhead , K.K. and Reddy , K.R. 1988 . Oxygen transport through selected aquatic macrophytes . Journal of Environmental Quality , 17 : 138 – 142 .
  • Perdomo , S. , Fujita , M. and Furukawa , K. Oxygen transport through Pistia stratiotes L. Proc. 5th Internat. Conf. Wetland Systems for Water pollution Control, Universität für Bodenkultur . Vienna, Austria. chapter VIII/4
  • Brix , H. Denmark . 1998 . Constructed Wetlands for Wastewater Treatment in Europe , Edited by: Vymazal , J. , Brix , H. , Cooper , P.F. , Green , M.B. and Haberl , B. 23 – 56 . Leiden, , The Netherlands : Backhuys Publishers .
  • Armstrong , J. and Armstrong , W. 1990 . Light‐enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud . New Phytologist , 114 : 121 – 128 .
  • Brix , H. 1994 . Functions of macrophytes in constructed wetlands . Water Science and Technology , 29 (4) : 71 – 78 .
  • Reddy , K.R. , Diaz , O.A. , Scinto , L.J. and Agami , M. 1995 . Phosphorus dynamics in selected wetlands and streams of the Lake Okechobee . Ecological Engineering , 5 : 183 – 208 .
  • Brix , H. , Sorrell , B.K. and Orr , P.T. 1992 . Internal pressurization and convective gas flow in some emergent freshwater macrophytes . Limnology and Oceanography , 37 : 1420 – 1433 .
  • Brix , H. , Sorrell , B.K. and Schierup , H.H. 1996 . Gas fluxes achieved by in situ convective flow in Phragmites australis . Aquatic Botany , 54 : 151 – 163 .
  • Russell , J.M. , Vanoostrom , A.J. and Lindsey , S.B. 1994 . Denitrifying sites in constructed wetlands treating agricultural industry wastes . Environmental Technology , 15 : 95 – 99 .
  • Aoi , T. and Hayashi , T. 1996 . Nutrient removal by water lettuce (Pistia stratiotes) . Water Science and Technology , 34 : 407 – 412 .
  • Reddy , K.R. and DeBusk , W.F. 1985 . Nutrient removal potential of selected aquatic macrophytes . Journal of Environmental Quality , 14 : 459 – 462 .
  • Reddy , K.R. and DeBusk , W.F. 1985 . Growth characteristics of aquatic macrophytes cultured in nutrient‐enriched water. II. Azolla, duckweed, and salvinia . Economic Botany , 39 : 200
  • Reddy , K.R. , Campbell , K.L. , Graetz , D.A. and Portier , K.M. 1982 . Use of biological filters for agricultural drainage water treatment . Journal of Environmental Quality , 11 : 591 – 595 .
  • DeBusk , T.A. , Williams , L.D. and Ryther , J.H. 1983 . Removal of nitrogen and phosphorus from wastewater in a water hyacinth based treatment system . Journal of Environmental Quality , 12 : 257 – 262 .
  • Moorhead , K.K. , Reddy , K.R. and Graetz , D.A. 1987 . Nitrogen transformations in water hyacinth‐based water treatment systems . Journal of Environmental Quality , 17 : 71 – 76 .
  • Dean , J.V. and Biesboer , D.D. 1986 . Factors affecting nitrogen cycling in freshwater marsh: uptake of 15‐N ammonium by Typha latifolia L. (Typhaceae) and oxidation‐reduction potentials of submerged soil . American Journal of Botany , 89 : 331 – 347 .
  • Duran‐de‐Bazua , C. , Guido‐Zarate , A. , Huanosta , T. , Pardon‐Lopez , R.M. and Rodiguez‐Monroy , J. 2008 . Artificial wetlands performance: nitrogen removal . Water Science and Technology , 58 : 713 – 757 .
  • Richardson , C.J. 1985 . Mechanisms controlling phosphorus retention capacity in freshwater wetlands . Science , 228 : 1424 – 1427 .
  • Vymazal , J. 1995 . Algae and Element Cycling in Wetlands , 689 Chelsea, MI : Lewis Publishers .
  • Dunne , E.J. and Reddy , K.R. 2005 . “ Phosphorus biogeochemistry of wetlands in agricultural watersheds ” . In Nutrient Management in Agricultural Watersheds: A Wetland Solution , Edited by: Dunne , E.J. , Reddy , K.R. and Carton , O.T. 105 – 119 . Wageningen : Wageningen Academic Publishers .
  • Williams , T.P. 1994 . Metal accumulation within salt marsh environments – a review . Marine Pollution Bulletin , 28 : 277 – 290 .
  • Richardson , C.J. 1999 . “ The role of wetlands in storage, release, and cycling of phosphorus on the landscape: a 25‐year retrospective ” . In Phosphorus Biogeochemistry in Subtropical Ecosystems , Edited by: Reddy , K.R. , O’Connor , G.A. and Schelske , C.L. 47 – 68 . Boca Raton, FL : CRC Press .
  • Petrovic , M. and Kastelan‐Macan , M. 1996 . The uptake of inorganic phosphorus by insoluble metal‐humic complexes . Water Science and Technology , 34 : 253 – 258 .
  • Abe , K. , Ozaki , Y. and Kihou , N. 1993 . Use of higher plants and bed filter materials for domestic wastewater treatment in relation to resource recycling . Soil Science and Plant Nutrition , 39 : 257 – 267 .
  • Nogales , R. , Benitez , E. and Gutierrez , L. 1994 . Nutrient removal potential of water hyacinth grown in static Fe‐enriched sewage water . Fresenius Environmental Bulletin , 3 : 325 – 330 .
  • Christensen , N. , Mitsch , W.J. and Jorgensen , S.E. 1994 . A first generation ecosystem model of the Des Plaines river experimental wetland . Ecological Engineering , 3 : 495 – 521 .
  • Ding , X. , Jiang , J. , Wang , Y.Y. , Wang , W.Q. and Ru , B.G. 1994 . Bioconcentration of cadmium in water hyacinth in relation to thiol group content . Environmental Pollution , 84 : 93 – 96 .
  • Hao , Y.Y. , Roach , A.L. and Ramelow , G.J. 1993 . Uptake of metal ions by nonliving biomass derived from Sphagnum moss and water hyacinth roots . Journal of Environmental Science & Health , 28A : 2333 – 2343 .
  • Low , K.S. , Lee , C.K. and Tai , C.H. 1994 . Biosorption of copper by water hyacinth roots . Journal of Environmental Science & Health , A29 : 171 – 188 .
  • Niponey , P.C. 1990 . “ Studies in bioenergy. PhD Thesis ” . University of Calicut .
  • Singh , J. , Chawta , G. , Naqui , S.H.N. and Viswanathan , P.N. 1994 . Combined effects of cadmium and linear alkyl benzene . Ecotoxicology , 3 : 59 – 67 .
  • Dirilgen , N. and Inel , Y. 1994 . Cobalt‐copper and cobalt‐zinc effects on duckweed growth and metal accumulation . Journal of Environmental Science & Health Part , A29 : 63 – 81 .
  • Zaranyika , M.F. , Mutoko , F. and Murahwa , H. 1994 . Uptake of Zn, Co, Fe and Cr by water hyacinth (Eichhornia crassipes) in Lake Chivero Zimbabwe . Science of the Total Environment , 153 : 117 – 121 .
  • Sternberg , S.P.K. and Rahmani , G.N.H. 1999 . Bioremoval of lead from water using Lemna minor . Bioresource Technology , 70 : 225 – 230 . (Re: from Lemna Corporation (1992) Harvesting equipment makes the difference. Lemna Corporation’s Retention Times.)
  • Goulet , R.R. , Lalonde , J.D. , Munger , C. , Dupuis , S. , Dumont‐Frenette , G. , Prémont , S. and Campbell , P.G.C. 2005 . Phytoremediation of effluents from aluminum smelters: a study of Al retention in mesocosms containing aquatic plants . Water Research , 39 : 2291 – 2300 .
  • Sridahar , M. 1986 . Trace element composition of Pistia stratiotes in a polluted lake in Nigeria . Hydrobiologia , 131 : 273 – 276 .
  • Miretzky , P. , Saralegui , A. and Cirelli , A.F. 2006 . Simultaneous heavy metal removal mechanism by dead macrophytes . Chemosphere , 62 (2) : 247 – 254 .
  • Ghosh , M. and Singh , S.P. 2005 . A comparative study of cadmium phytoextraction by accumulator and weed species . Environmental Pollution , 133 : 365 – 371 .
  • Maine , M.A. , Sune , N.L. and Lagger , S.C. 2004 . Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes . Water Research , 38 : 1494 – 1501 .
  • Maine , M. , Duarte , M. and Sune , N. 2001 . Cadmium uptake by floating macrophytes . Water Research , 35 : 2629 – 2634 .
  • Cardwell , A. , Hawker , D. and Greenway , M. 2002 . Metal accumulation in aquatic macrophytes from southeast Queensland, Australia . Chemosphere , 48 : 653 – 663 .
  • Axtell , N. , Sternberg , S. and Claussen , K. 2003 . Lead and nickel removal using Microspora and Lemna minor . Bioresource Technology , 89 : 41 – 48 .
  • Miretzky , P. , Saralegui , A.F. and Cirelli , A. 2004 . Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina) . Chemosphere , 57 : 997 – 1005 .
  • Hassan , S.H. , Talat , M. and Rai , S. 2007 . Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichhornia crassipes) . Bioresource Technology , 98 : 918 – 928 .
  • Maine , M.A. , Sune , N. , Hadad , H. , Sanchez , G. and Bonetto , C. 2009 . Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetlands . Journal of Environmental Management , 90 : 1 – 355 .
  • Ghermandi , A. , Bixio , D. and Thoeye , C. 2007 . The role of free water surface constructed wetlands as polishing step in municipal wastewater reclamation and reuse . Science of the Total Environment , 380 : 247 – 258 .
  • Chen , R.L. and Barko , J.W. 1988 . Effects of freshwater macrophytes on sediment chemistry . Journal of Freshwater Ecology , 4 : 279 – 289 .
  • Pedersen , O. , Sand‐Jensen , H. and Revsbech , N.P. 1995 . Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna . Ecology , 76 : 1536 – 1545 .
  • Connell , E.L. , Colmer , T.D. and Walker , D.I. 1999 . Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination . Aquatic Botany , 63 : 219 – 228 .
  • Bedford , B.L. , Bouldin , D.R. and Beliveau , B.D. 1991 . Net oxygen and carbon‐dioxide balances in solutions bathing roots of wetland plants . Journal of Ecology , 79 : 943 – 959 .
  • Jacob , D.L. and Otte , M.L. 2003 . Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization . Water, Air and Soil Pollution , 3 : 91 – 104 .
  • St‐Cyr , L. and Campbell , P.G.C. 1996 . Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: relations with metal concentrations in the adjacent sediments and in the root tissue . Biogeochemistry , 33 : 45 – 76 .
  • Otte , M.L. , Rozema , J. , Koster , L. , Haarsma , M.S. and Broekman , R.A. 1989 . Iron plaque on roots of Aster tripolium L. interaction with zinc uptake . New Phytologist , 111 : 309 – 317 .
  • Batty , L.C. , Baker , A.J.M. , Wheeler , B.D. and Curtis , C.D. 2000 . The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel . Annals of Botany , 86 : 647 – 653 .
  • Ye , Z.H. , Baker , A.J.M. , Wong , M.H. and Willis , A.J. 1998 . Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface . Aquatic Botany , 61 : 55 – 67 .
  • Zhang , X. , Zhang , F. and Mao , D. 1998 . Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.). Zinc uptake by Fe‐deficient rice . Plant Soil , 202 : 33 – 39 .
  • Weis , J.S. and Weis , P. 2004 . Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration . Environment International , 30 : 685 – 700 .
  • Kadlec , R.H. 2000 . The inadequacy of first‐order removal models . Ecological Engineering , 15 : 105 – 119 .
  • Yeh , T.Y. and Wu , C.H. 2009 . Pollutant removal within hybrid constructed wetland systems in tropical regions . Water Science and Technology , 59 : 2 – 233 .
  • Vigneault , B. , Campbell , G.C. , Tessier , A. and De Vitre , R. 2001 . Geochemical changes in sulfidic mine tailings stored under a shallow water cover . Water Research , 35 : 1066 – 1076 .
  • Marschner , H. and Römheld , V. 1996 . “ Root‐induced changes in the availability of micronutrients in the rhizosphere ” . In Plant Roots: The Hidden Half , Edited by: Waisel , Y. , Eshel , A. and Kafkaki , U. 557 – 580 . New York : Marcel Decker, Inc. .
  • Lambers , H. , Chapin , F.S. III and Pons , T.L. 1998 . Plant Physiological Ecology , New York : Springer .
  • Doyle , M.O. and Otte , M.L. 1997 . Organism‐induced accumulation of iron, zinc and arsenic in wetland soils . Environmental Pollution , 96 : 1 – 11 .
  • Senden , M.H.M.N. , vander Meer , A.J.G.M. , Verburg , T.G. and Wolterbeek , H.T. 1995 . Citric acid in tomato plant toots and its effect on cadmium uptake and distribution . Plant Soil , 171 : 333 – 339 .
  • Hoffland , E. 1992 . Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape . Plant Soil , 140 : 279 – 289 .
  • Jackson , L.J. 1998 . Paradigms of metal accumulation in rooted aquatic vascular plants . Science of the Total Environment , 219 : 223 – 231 .
  • Sharma , S.S. and Gaur , J.P. 1995 . Potential of Lemna polyrrhiza for removal of heavy metals . Ecological Engineering , 4 : 37 – 43 .
  • Fritioff , A. and Greger , M. 2003 . Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater . International Journal of Phytoremediation , 5 : 211 – 224 .
  • Szymanowska , A. , Samecka‐Cymerman , A. and Kempers , A.J. 1999 . Heavy metals in three lakes in West Poland . Ecotoxicology and Environmental Safety , 43 : 21 – 29 .
  • Clemens , S. , Palmgren , M.G. and Krämer , U. 2002 . A long way ahead: understanding and engineering plant metal accumulation . Trends in Plant Science , 7 : 309 – 315 .
  • Rauser , W.E. 1999 . Structure and function of metal chelators produced by plants. The case for organic acids, amino acids, phytin, and metallothioneins . Cell Biochemistry and Biophysics , 31 : 19 – 48 .
  • Kramer , U. , Cotter‐Howells , J.D. , Charnock , J.M. , Baker , A.J.M. and Smith , J.A.C. 1996 . Free histidine as a metal chelator in plants that accumulate nickel . Nature , 379 : 635 – 638 .
  • Evans , K.M. , Gatehouse , J.A. , Lindsay , W.P. , Shi , J. , Tommey , A.M. and Robinson , N.J. 1992 . Expression of the pea metallothionein‐like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation, implications for PsMTA function . Plant Molecular Biology , 20 : 1019 – 1028 .
  • Samardakiewicz , S. and Wony , A. 2000 . The distribution of lead in duckweed (Lemna minor L.) root tip . Plant and Soil , 226 : 107 – 111 .
  • Choo , T.P. , Lee , C.K. , Low , K.S. and Hishamuddin , O. 2006 . Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea) . Chemosphere , 62 : 961 – 967 .
  • Sinha , S. , Saxena , R. and Singh , S. 2002 . Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects . Environmental Monitoring and Assessment , 80 : 17 – 31 .
  • Bentley , R. and Chasteen , T.G. 2002 . Microbial methylation of metalloids: arsenic, antimony and bismuth . Microbiology and Molecular Biology Reviews , 66 : 250 – 271 .
  • Fatoki , O.S. 1997 . Biomethylation in the natural environment . South African Journal of Science , 93 : 366 – 370 .
  • Trevers , J.T. 1986 . Mercury methylation by bacteria . Journal of Basic Microbiology , 26 : 499 – 504 .
  • Mauro , J.B. , Guimaraes , J.R. and Malemed , R. 1999 . Mercury methylation in a tropical macrophyte: influence of abiotic parameters . Applied Ogranometallic Chemistry , 13 : 1 – 6 .
  • Guimaraes , J.R. , Meili , M. , Hylander , R. , De Castro e Silva , E. , Roulet , R. and Mauro , J.N. 2000 . Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in the surface sediments and flooded soils . Science of the Total Environment , 261 : 99 – 107 .
  • Pardue , J.H. and Patrick , W.H. Jr . 1995 . “ Changes in metal speciation following alterations of sediment redox status ” . In Metal Contaminated Aquatic Sediments , Edited by: Allen , H.E. 169 – 185 . Ann Arbor, MI : Ann Arbor Press .
  • Dierberg , F.E. , Goulet , N.A. and DeBusk , T.A. 1987 . Removal of two chlorinated compounds from secondary domestic effluent by a thin film technique . Journal of Environmental Quality , 16 : 321 – 324 .
  • Dierberg , F.E. , Goulet , N.A. and DeBusk , T.A. 1987 . “ Removal of copper lead using a thin‐film technique ” . In Aquatic Plants for Water Treatment and Resource Recovery , Edited by: Reddy , K.R. and Smith , W.H. 497 – 504 . Orlando, FL : Magnolia Publishing .
  • Behrends , L.L. , Houke , L. , Bailey , E. , Jansen , P. and Brown , D. 2001 . Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater . Water Science and Technology , 44 (11–12) : 399 – 405 .
  • Ji , G. , Sun , T. , Zhou , Q. , Sui , X. , Chang , S. and Li , P. 2002 . Constructed subsurface slow wetland for treating heavy oil‐produced water of the Liaohe Oilfield in China . Ecological Engineering , 18 : 459 – 465 .
  • Schulz , R. and Peall , S.K.C. 2001 . Effectiveness of a constructed wetland for retention of nonpoint‐source pesticide pollution in the Lourens River catchment, South Africa . Environmental Science and Technology , 35 : 422 – 426 .
  • Kadlec , R.H. and Hey , D.L. 1994 . Constructed wetlands for river quality improvement . Water Science and Technology , 29 : 159 – 168 .
  • Chapman , H. 2003 . Removal of endocrine disruptors by tertiary treatments and constructed wetlands in subtropical Australia . Water Science and Technology , 47 : 151 – 156 .
  • Barber , L.B. , Keefe , S.H. , Brown , G.K. , Taylor , H.E. , Antweiler , R.C. and Peart , D.B. Organic and Trace Element Contaminants in Water, Biota, Sediment, and Semipermeable Membrane Devices at the Tres Rios Demonstration Wetlands, Phoenix, Arizona . US geological survey water resources investigation report . vol. 03‐4129 , pp. 87 Washington, DC : US Geological Survey .
  • Park , N. , Vanderford , B.J. , Snyder , S.A. , Sarp , S. , Kim , S.D. and Cho , J. 2009 . Effective controls of micropollutants included in wastewater effluent using constructed wetlands under anoxic condition . Ecological Engineering , 35 : 418 – 423 .
  • Stowell , R. , Ludwig , R. , Coltm , J. and Tchobanoglous , G. 1980 . Towards the Rational Design of Aquatic Treatment System , 1 – 78 . Davis : University of California Press .
  • Gilman , R.H. , Mullick , D. , Chatterjee , B.D. and Nath , K. Clearance of Pathogenic Bacteria and Virus from the Water Column by Aquatic Plants . International Conference on Water Hyacinth . Hyderabad. pp. 51 Synopsis of papers .
  • Karim , M.R. , Faezeh , D.M. , Karpiscak , M.M. and Gerba , C.P. 2004 . The persistence and removal of enteric pathogens in constructed wetlands . Water Research , 38 : 1831 – 1837 .
  • Perkins , J. and Hunter , C. 2000 . Removal of enteric bacteria in a surface flow constructed wetlands in Yorkshire, England . Water Research , 34 : 1941 – 1947 .
  • Greenway , M. 2005 . The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia . Ecological Engineering , 5 : 501 – 509 .
  • USEPA . 1999 . Municipal Solid Waste Landfills, Volume 1: Summary of the Requirements for the New Source Performance Standards and Emission Guidelines for Municipal Solid Waste Landfills , Washington, DC : USEPA . EPA‐453‐R/96‐004
  • ANPA . 2002 . “ Linee guida per la ricostruzione di aree umide per il trattamento di acque superficiali ” . Manuali e linee guida 9/2002, ANPA Dipartimento Prevenzione e Risanamento Ambientale
  • Garcia , M. , Soto , F. , Gonzalez , J.M. and Becares , E. 2008 . A comparison of bacterial removal efficiencies in constructed wetlands and algae‐based systems . Ecological Engineering , 32 : 238 – 243 .
  • Sim , C.H. 2003 . The Use of Constructed Wetlands for Wastewater Treatment , 1 – 24 . Malaysia : Wetlands International .
  • Khan , F.I. and Abbasi , S.A. 1997 . Accident hazard index: a multi‐attribute method for process industry hazard rating . Process Safety and Environmental Protection , 75 (4) : 217 – 224 .
  • Khan , F.I. and Abbasi , S.A. 1998 . Multivariate hazard identification and ranking system . Process Safety Progress , 17 (3) : 157 – 170 .
  • Khan , F.I. and Abbasi , S.A. 1998 . DOMIFFECT (DOMIno eFFECT): user‐friendly software for domino effect analysis . Environmental Modelling and Software , 13 (2) : 163 – 177 .
  • Khan , F.I. and Abbasi , S.A. 1998 . Inherently safer design based on rapid risk analysis . Journal of Loss Prevention in the Process Industries , 11 (6) : 361 – 372 .
  • Khan , F.I. and Abbasi , S.A. 2000 . Analytical simulation and PROFAT II: a new methodology and a computer automated tool for fault tree analysis in chemical process industries . Journal of Hazardous Materials , 75 (1) : 1 – 27 .
  • Khan , F.I. and Abbasi , S.A. 2001 . An assessment of the likelihood of occurence and the damage potential of domino effect (chain of accidents) in a typical cluster of industries . Journal of Loss Prevention in the Process Industries , 14 (4) : 283 – 306 .
  • Guerin , F. , Abril , G. , Tremblay , A. and Delmas , R. 2008 . Nitrous oxide emissions from tropical hydroelectric reservoirs . Geophysical Research Letters , 35 : L06404 doi:10.1029/2007GL033057
  • Kemenes , A. , Forsberg , B.R. and Melack , J.M. 2007 . Methane release below a tropical hydroelectric dam . Geophysical Research Letters , 34 : L12809 doi:10.1029/2007GL029479
  • Maltais‐Landry , G. , Maranger , R. and Brisson , J. 2008 . Effect of artificial aeration and macrophyte species on nitrogen cycling and gas flux in constructed wetlands . Ecological Engineering , 35 (2) : 221 – 229 .
  • Maltais‐Landry , G. , Maranger , R. , Brisson , J. and Chazarence , F. 2009 . Nitrogen transformations are retention in planted and artificially aerated constructed wetlands . Water Research , 43 : 25 – 35 .
  • Maltais‐Landry , G. , Maranger , R. , Brisson , J. and Chazarence , F. 2009 . Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands . Environmental Pollution , 157 : 37 – 48 .
  • Gui , P. , Inamori , R. , Matsumura , M. and Inamori , Y. 2007 . Evaluation of constructed wetlands by wastewater purification ability and greenhouse gas emissions . Water Science and Technology , 56 (3) : 49 – 55 .
  • Inamori , R. , Gui , P. , Dass , P. , Matsumura , M. , Xu , K.‐Q. , Kondo , T. , Ebie , Y. and Inamori , Y. 2007 . Investigating CH4 and N2O emissions from eco‐engineering wastewater treatment processes using constructed wetland microcosms . Process Biochemistry , 42 (3) : 363 – 373 .
  • Reddy , K.R. and Smith , W.H. 1987 . Aquatic Macrophytes for Water Treatment and Resource Recovery , 1 – 1032 . Orlando, FL : Magnolia Publishing .
  • Boyd , C.E. 1974 . “ Utilization of aquatic plants ” . In Aquatic Vegetation and Its Use and Control , Edited by: Mitchess , D.S. 107 – 115 . Paris : UNESCO .
  • Abbasi , S.A. and Abbasi , N. 2000 . The likely adverse environmental impacts of renewable energy sources . Applied Energy , 65 (1–4) : 121 – 144 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.