108
Views
9
CrossRef citations to date
0
Altmetric
Articles

Aging of membranes prepared from PVA and cellulose nanocrystals by use of thermal compression

, , & ORCID Icon

References

  • Abdel Bary, E.M., Soliman, Y.A., Fekri, A. and Harmal, A.N., 2018, Aging of novel membranes made of PVA and cellulose nanocrystals extracted from Egyptian rice husk manufactured by compression moulding process. International Journal of Environmental Studies. doi:10.1080/00207233.2018.1456862.
  • Abdel Bary, E.M., Fekri, A., Soliman, Y.A. and Harmal, A.N., 2017, Novel superabsorbent membranes made of PVA and Ziziphus spina-christi cellulose for agricultural and horticultural applications. New Journal of Chemistry, 41, 9688–9700.10.1039/C7NJ01676J
  • Abdel Bary, E.M., Fekri, A., Soliman, Y.A. and Harmal, A.N., 2018, Chemical and biology aging of novel green membranes made of PVA and wood flour fibers reinforced with nanosilica manufactured by compression molding process. International Journal of Polymer Analysis and Characterization, 23, 159–169.
  • Sonker, A.K., Wagner, H.D., Bajpai, R., Tenne, R. and Sui, X., 2016, Effects of tungsten disulphide nanotubes and glutaric acid on the thermal and mechanical properties of polyvinyl alcohol. Composites Science and Technology, 127, 47–53.10.1016/j.compscitech.2016.02.030
  • Wu, S., Zheng, G., Guan, X., Yan, X., Guo, J., Dai, K., Liu, C., Shen, C. and Guo, Z., 2016, Mechanically strengthened polyamide 66 nanofibers bundles via compositing with polyvinyl alcohol. Macromolecular Materials and Engineering, 301(2), 212–219.10.1002/mame.v301.2
  • de Oliveira, A.H., Nascimento, M.L. and de Oliveira, H.P., 2016, Preparation of KOH-Doped PVA/PSSA Solid Polymer Electrolyte for DMFC: The Influence of TiO2 and PVP on Performance of Membranes. Fuel Cells, 16(2), 151–156.10.1002/fuce.201500199
  • Geraud, G., Essoua, E., Blanchet, P., Landry, V. and Beauregard, R., 2015, Maleic anhydride treated wood: effects of drying time and esterification temperature on properties. BioResources, 10(4), 6830–6860.
  • Shen, Z., Ghasemlou, M. and Kamdem, D.P., 2015, Development and compatibility assessment of new composite film based on sugar beet pulp and polyvinyl alcohol intended for packaging applications. Journal of Applied Polymer Science, 132(4), 1–8.
  • Cano, A., Fortunati, E., Chafer, M., Kenny, J.M. and Chiralt, A., 2015, Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84–93.10.1016/j.foodhyd.2015.01.008
  • Wang, Y.T., Liao, S.F., Shang, K., Chen, M.J., Huang, J.Q., Wang, Y.-Z. and Schiraldi, D.A., 2015, Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate. ACS Applied Materials & Interfaces, 7(3), 1780–1786.10.1021/am507409d
  • Li, W., Xu, F., Sun, L., Liu, W. and Qiu, Y., 2016, A novel flexible humidity switch material based on multi-walled carbon nanotube/polyvinyl alcohol composite yarn. Sensors and Actuators B: Chemical, 230, 528–535.10.1016/j.snb.2016.02.108
  • Kallakas, H., Poltimäe, T., Süld, T.-M., Kers, J. and Krumme, A., 2015, The influence of accelerated weathering on the mechanical and physical properties of wood-plastic composites. Proceedings of the Estonian Academy of Sciences, 64, 94–104.10.3176/proc.2015.1S.05
  • Pan, Z., Wu, C., Liu, J., Wang, W. and Liu, J., 2015, Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Construction and Building Materials, 78, 397–404.10.1016/j.conbuildmat.2014.12.071
  • Zhou, Y., Yu, J., Wang, X., Wang, Y., Zhu, J. and Hu, Z., 2015, Preparation of KH570-SiO2 and their modification on the MF/PVA composite membrane. Fibers and Polymers, 16, 1772–1780.10.1007/s12221-015-5284-z
  • Doczekalska, B., Bartkowiak, M. and Zakrzewski, R., 2014, Esterification of willow wood with cyclic acid anhydrides. Wood Research, 59(1), 85–96.
  • Azeh, Y., Olatunji, G.A., Mohammed, C. and Mamza, P.A., 2013, Acetylation of wood flour from four wood species grown in nigeria using vinegar and acetic anhydride. International Journal of Carbohydrate Chemistry, 2013, 1–6.10.1155/2013/141034
  • Ozaki, S.K., Monteiro, M.B., Yano, H., Imamura, Y. and Souza, M.F., 2005, Biodegradable composites from waste wood and poly(vinyl alcohol). Polymer Degradation and Stability, 87, 293–299.10.1016/j.polymdegradstab.2004.08.011
  • Vaidya, A.A., Gaugler, M. and Smith, D.A., 2016, Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion. Carbohydrate Polymers, 136, 1238–1250.10.1016/j.carbpol.2015.10.033
  • Hao, N.H., Trinh, P.T., Tung, N.H., Tien, M.Van and Thanh, N.T., 2015, Relationship between the structure of polymer network using glutaraldehyde crosslinking agent and physico-mechanical properties of biopolymer membrane based on polyvinyl alcohol (PVA) modified with cassava starch. Vietnam Journal of Chemistry, 53(2), 188–193.
  • Moreno-Cortez, I., Romero-Garcia, J.V., Gonzalez-Gonzalez, V., Garcia-Gutierrez, D.I., Garza-Navarro, M.A. and Cruz-Silva, R., 2015, Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor. Materials Science and Engineering C, 52, 306–314.10.1016/j.msec.2015.03.049
  • Zhang, W., Yang, X., Li, C., Liang, M., Lu, C. and Deng, Y., 2011, Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydrate Polymers, 83(1), 257–263.10.1016/j.carbpol.2010.07.062
  • Bana, R. and Banthia, A.K., 2011, Mechanical and thermal analysis of poly (Vinyl-Alcohol) and modified wood dust composites. Journal of Wood Chemistry and Technology, 31, 218–232.10.1080/02773813.2010.523160
  • Abdel Bary, E.M., Fekri, A., Soliman, Y. and Harmal, A.N., 2016, biodegradable polymer nanocomposites based on polyvinyl alcohol and nano-rice straw. Indian Journal of Applied Research, 6, 713–721.
  • Qiu, K. and Netravali, A.N., 2012, Fabrication and characterization of biodegradable composites based on microfbrillated cellulose and polyvinyl alcohol. Composites Science and Technology, 72(13), 1588–1594.10.1016/j.compscitech.2012.06.010
  • Metwally, M.A., Gouda, M.A., Harmal, A.N. and Khalil, A.M., 2012, 3-iminobutanenitrile as building block for the synthesis of substituted pyrazolo [1, 5-a ] pyrimidines with antitumor and antioxidant activities. International Journal of Modern Organic Chemistry, 1, 96–114.
  • Abdel Bary, E.M., Fekri, A., Soliman, Y. and Harmal, A.N., 2018, Characterization and swelling–deswelling properties of porous superabsorbent hydrogel membranes made of PVA and Ziziphus spina-christi fibers reinforced with nanosilica manufactured by compression moulding process. Polymer Bulletin. doi:10.1007/s00289-018-2315-0.
  • Abou El-Reash, Y.G., Abdelghany, A.M. and Elrazak, A.A., 2016, Removal and separation of Cu(II) from aqueous solutions using nano-silver chitosan/polyacrylamide membranes. International Journal of Biological Macromolecules, 86, 789–798.10.1016/j.ijbiomac.2016.01.101
  • Abdel Bary, E.M., Harmal, A.N., Saeed, A. and Gouda, M.A., 2018, Design. Synthesis, characterization, swelling and in vitro drug release behavior of composite hydrogel beads based on methotrexate and chitosan incorporating antipyrine moiety. Polymer- Plastics Technology and Engineering. doi:10.1080/03602559.2018.1447126.
  • Jiang, F. and Hsieh, Y., 2015, Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers, 122, 60–68.10.1016/j.carbpol.2014.12.064
  • Qin, L., Qiu, J., Liu, M., Ding, S., Shao, L. and Lü, S., 2011, Mechanical and thermal properties of poly(lactic acid) composites with rice straw fber modifed by poly(butyl acrylate). Chemical Engineering Journal, 166(2), 772–778.10.1016/j.cej.2010.11.039
  • Zidan, H.M., El-Ghamaz, N.A., Abdelghany, A.M. and Waly, A.L., 2018, Photodegradation of methylene blue with PVA/PVP blend under UV light irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 199, 220–227.10.1016/j.saa.2018.03.057
  • Gaume, J., Wong-Wah-Chung, P., Rivaton, A., Thérias, S. and Gardette, J.-L., 2011, Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation. RSC Advances, 1(8), 1471–1481.10.1039/c1ra00350j
  • Pawde, S.M., Deshmukh, K. and Parab, S., 2008, Preparation and characterization of poly(vinyl alcohol) and gelatin blend films. Journal of Applied Polymer Science, 109, 1328–1337.10.1002/(ISSN)1097-4628
  • Sheela, T., Bhajantri, R.F., Ravindrachary, V., Rathod, S.G., Pujari, P.K., Poojary, B. and Somashekar, R., 2014, Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends. Radiation Physics and Chemistry, 103, 45–52.10.1016/j.radphyschem.2014.05.036
  • Colom, X., Carrillo, F., Nogués, F. and Garriga, P., 2003, Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80(3), 543–549.10.1016/S0141-3910(03)00051-X
  • Ma, K., Voort, F.R., Sedman, J. and Ismail, A.A., 1997, Stoichiometric determination of hydroperoxides in fats and oils by fourier transform infrared spectroscopy. Journal of the American Oil Chemists’ Society, 74(8), 897–906.10.1007/s11746-997-0001-8
  • Li, G.C., Chen, J., Li, Q. and Yang, T., 2011, Biodegradable composites from pinewood sawdust and polyvinyl alcohol adhesives. Advanced Materials Research, 281, 59–63.
  • Berens, A.R., 1979, Induction and measurement of glassy-state relaxations by vapor sorption techniques. Journal of Polymer Science, 17, 1757–1770.
  • Pǎduraru, O.M., Ciolacu, D., Darie, R.N. and Vasile, C., 2012, Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Materials Science and Engineering C, 32(8), 2508–2515.10.1016/j.msec.2012.07.033
  • Fan, W. and Li, J., 2014, Rapid evaluation of thermal aging of polymer composites. Plastics Research Online, 1, 1–3.
  • Suardana, N.P., Abdalla, A., Kim, H.K., Choi, K.S. and Lim, J.K., 2004, mechanical properties and biodegradability of green composites based on polylactic-acid polymer mechanical properties and biodegradability of green composites on polylactic-acid polymer. Journal of Applied Polymer Science, 92, 3857–3863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.