93
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Manufacturing of superabsorbent membranes of PVA and rice husk fibres reinforced with nanosilica for agricultural and horticultural applications

, , & ORCID Icon

References

  • Abdel Bary, E.M., Fekri, A., Soliman, Y.A., and Harmal, A.N., 2017, Novel superabsorbent membranes made of PVA and Ziziphus Spina-Christi cellulose for agricultural and horticultural applications. New Journal of Chemistry 41, 9688–9700. doi:10.1039/C7NJ01676J.
  • Montesano, F.F., Parente, A., Santamaria, P., Sannino, A., and Serio, F., 2015, Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agriculture and Agricultural Science Procedia 4, 451–458. doi:10.1016/j.aaspro.2015.03.052.
  • Kabiri, K., Omidian, H., Zohuriaan-Mehr, M.J., and Doroudiani, S., 2008, Superabsorbent hydrogel composites and nanocomposites: A review. Polymer Composite 16, 101–113.
  • Puoci, F., Iemma, F., Spizzirri, U.G., Cirillo, G., Curcio, M., and Picci, N., 2008, Polymer in agriculture: A review. American Journal of Agricultural and Biological Sciences 3, 299–314. doi:10.3844/ajabssp.2008.299.314.
  • Kasgoz, H. and Durmus, A., 2006, Nanostructured polyolefins/clay composites: Role of the molecular interaction at the interface. Polymers for Advanced Technologies 17, 395–418.
  • Kosemund, K., Schlatter, H., Ochsenhirt, J.L., Krause, E.L., Marsman, D.S., and Erasala, G.N., 2009, Safety evaluation of superabsorbent baby diapers. Regulatory Toxicology and Pharmacology 53, 81–89. doi:10.1016/j.yrtph.2008.10.009.
  • Merino, S., Martıin, C., Kostarelos, K., Prato, M., and Vazquez, E., 2015, Nanocomposite hydrogels: 3D polymer à nanoparticle synergies for on-demand drug delivery. ACS Nano 9, 4686–4697. doi:10.1021/nn507282f.
  • Pina, S., Oliveira, J.M., and Reis, R.L., 2015, Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials 27, 1143–1169. doi:10.1002/adma.201403354.
  • Kiatkamjornwong, S., 2007, Superabsorbent polymers and superabsorbent polymer composites. ScienceAsia 33, 39–43. doi:10.2306/scienceasia1513-1874.2007.33(s1).039.
  • Fajardo, R., Pereira, B., Ricardo, S., Feitosa, A., and Muniz, E.C., 2012, Chitosan- graft -poly (acrylic acid)/rice husk ash based superabsorbent hydrogel composite: Preparation and characterization. Journal of Polymer Research 19, 1–10. doi:10.1007/s10965-012-0001-8.
  • Abdel Bary, E.M., Fekri, A., Soliman, Y., and Harmal, A.N., 2016, Biodegradable polymer nanocomposites based on polyvinyl alcohol and nano-rice straw. Indian Journal of Applied Research 6, 713–721.
  • Abdel Bary, E.M., Fekri, A., Soliman, Y.A., and Harmal, A.N., 2018, Chemical and biology aging of novel green membranes made of PVA and wood flour fibers reinforced with nanosilica manufactured by compression molding process. International Journal of Polymer Analysis and Characterization 23, 159–169. doi:10.1080/1023666X.2017.1404271.
  • Hassan, C.M. and Peppas, N.A., 2000, Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33, 2472–2479. doi:10.1021/ma9907587.
  • Hassan, C.M., Ward, J.H., and Peppas, N.A., 2000, Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes. Polymer 41, 6729–6739. doi:10.1016/S0032-3861(00)00031-8.
  • Nghiep, T.D., Minh, N., and Cong, N.T., 2010, Formation and characterization of a hydrophilic polymer hydrogel under gamma irradiation. Journal of Radioanalytical and Nuclear Chemistry 285, 719–721. doi:10.1007/s10967-010-0618-1.
  • Sadeghi, H. and Mohammad, H., 2012, Preparation and swelling behaviour of carboxymethylcellulose-g-poly (sodium acrylate)/kaolin super absorbent hydrogel composites. Asian Journal of Chemistry 24, 85–88.
  • Bal, A., Çepni, F.E., Çakir, Ö., Acar, I., and Güçlü, G., 2015, Synthesis and characterization of copolymeric and terpolymeric hydrogel-silver nanocomposites based on acrylic acid, acrylamide and itaconic acid: Investigation of their antibacterial activity against gram-negative bacteria. Brazilian Journal of Chemical Engineering 32, 509–518. doi:10.1590/0104-6632.20150322s00003066.
  • Zhang, W., Yang, X., Li, C., Liang, M., Lu, C., and Deng, Y., 2011, Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydrate Polymers 83, 257–263. doi:10.1016/j.carbpol.2010.07.062.
  • Bana, R. and Banthia, A.K., 2011, Mechanical and thermal analysis of poly (Vinyl-Alcohol) and modified wood dust composites. Journal of Wood Chemistry and Technology 31, 218–232. doi:10.1080/02773813.2010.523160.
  • Jiang, F. and Hsieh, Y., 2015, Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122, 60–68. doi:10.1016/j.carbpol.2014.12.064.
  • Qin, L., Qiu, J., Liu, M., Ding, S., Shao, L., and Lü, S., 2011, Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chemical Engineering Journal 166, 772–778. doi:10.1016/j.cej.2010.11.039.
  • Metwally, M.A., Soliman, Y.A., Gouda, M.A., Harmal, A.N., and Khalil, A.M., 2012, 3-Iminobutanenitrile as Building block for the synthesis of substituted pyrazolo[1,5-a]pyrimidines with antitumor and antioxidant activities. International Journal of Modern Organic Chemistry 1, 96–114.
  • Abdel Bary, E.M., Harmal, A.N., Saeed, A., and Gouda, M.A., 2018, Design, synthesis, characterization, swelling and in vitro drug release behavior of composite hydrogel beads based on methotrexate and chitosan incorporating antipyrine moiety. Polymer- Plastics Technology and Engineering, 1447126. doi:10.1080/03602559.2018.
  • Gharekhani, H., Olad, A., Mirmohseni, A., and Bybordi, A., 2017, Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies. Carbohydrate Polymers 168, 1–13. doi:10.1016/j.carbpol.2017.03.047.
  • Abdel Bary, E.M., Soliman, Y.A., Fekri, A., and Harmal, A.N., 2018, Characterisation and swelling–Deswelling properties of superabsorbent membranes made of PVA and cellulose nanocrystals. International Journal of Environmental Studies, doi:10.1080/00207233.2018.1496607.
  • Yazdimamaghani, M., Pourvala, T., Motamedi, E., Fathi, B., Vashaee, D., and Tayebi, L., 2013, Synthesis and characterization of encapsulated nanosilica particles with an acrylic copolymer by in situ emulsion polymerization using thermoresponsive nonionic surfactant. Materials 6, 3727–3741. doi:10.3390/ma6093727.
  • Chopra, P., Garg, S., and Jana, A.K., 2013, Study on the performance of starch/PVA blend films modified with SiO2 nanoparticles. International Journal of Mechanical Engineering & Technology 5762, 36–40.
  • Bana, R. and Banthia, A.K., 2007, Green composites: Development of Poly(Vinyl Alcohol)-wood dust composites. Polymer-Plastics Technology and Engineering 46, 821–829. doi:10.1080/03602550701278079.
  • Qiao, J., Hamaya, T., and Okada, T., 2005, New highly proton conductive polymer membranes poly(vinyl alcohol)–2-acrylamido-2-methyl-1-propanesulfonic acid (PVA–PAMPS). Journal of Materials Chemistry 15, 4414–4423. doi:10.1039/b507924a.
  • Mansur, H.S. and Mansur, A.P., 2005, Small angle X-ray scattering, FTIR and SEM characterization of nanostructured PVA/TEOS hybrids by chemical crosslinking. Materials Research Society 871, 1–6.
  • Abdel Bary, E.M., Soliman, Y.A., Fekri, A., and Harmal, A.N., 2018, Aging of novel membranes made of PVA and cellulose nanocrystals extracted from Egyptian rice husk manufactured by compression moulding process. International Journal of Environmental Studies 75, 750–762. doi:10.1080/00207233.2018.1456862.
  • Abdel Bary, E.M., Soliman, Y.A., Fekri, A., and Harmal, A.N., 2018, Aging of membranes prepared from PVA and cellulose nanocrystals by use of thermal compression. International Journal of Environmental Studies 75, 950–964. doi:10.1080/00207233.2018.1472448.
  • Abdel Bary, E.M., Fekri, A., Soliman, Y., and Harmal, A.N., 2018, Characterization and swelling–Deswelling properties of porous superabsorbent hydrogel membranes made of PVA and Ziziphus spina-christi fibers reinforced with nanosilica manufactured by compression moulding process. Polymer Bulletin, doi:10.1007/s00289-018-2315-0.
  • Tang, H., Xiong, H., Tang, S., and Zou, P., 2009, A starch-based biodegradable film modified by nano silicon dioxide. Journal of Applied Polymer Science 113, 34–40. doi:10.1002/app.v113:1.
  • Ma, K., Voort, F.R., Sedman, J., and Ismail, A., 1997, Stoichiometric determination of hydroperoxides in fats and oils by fourier transform infrared spectroscopy. Journal of the American Oil Chemists’ Society 74, 897–906. doi:10.1007/s11746-997-0001-8.
  • Li, G.C., Chen, J., Li, Q., and Yang, T., 2011, Biodegradable composites from pinewood sawdust and polyvinyl alcohol adhesives. Advanced Materials Research 281, 59–63. doi:10.4028/www.scientific.net/AMR.281.
  • Cândido, J., Pereira, A., Fajardo, A., Ricardo, N., Feitosa, J., Muniz, E., and Rodrigues, F., 2013, Poly(acrylamide-co-acrylate)/rice husk ash hydrogel composites. II. Temperature effect on rice husk ash obtention. Composites Part B: Engineering 51, 246–253. doi:10.1016/j.compositesb.2013.03.027.
  • Awasthi, S. and Singhal, R., 2013, A study on interaction and solubility of acetaminophen with Poly(AM-co-HEA-co-AA) hydrogels by DSC: Effect on drug diffusion behavior. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 50, 72–89. doi:10.1080/10601325.2012.736266.
  • Kasgoz, H. and Durmus, A., 2008, Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polymers for Advanced Technologies 19, 838–845. doi:10.1002/pat.1045.
  • Rowbotham, J.S., Dyer, P.W., Greenwell, H.C., Selby, D., and Theodorou, M.K., 2013, Copper (II) -mediated thermolysis of alginates: A model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae. Interface Focus 3, 1–16.
  • Shi, X.N., Wang, W.B., and Wang, A.Q., 2011, Synthesis, characterization and swelling behaviors of guar gum-g-poly(sodium acrylate-co-styrene)/vermiculite superabsorbent composites. Journal of Composite Materials 45, 2189–2198. doi:10.1177/0021998311401071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.