176
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Ultrafast remediation of lead-contaminated water applying sphagnum peat moss by dispersive solid-phase extraction

&

References

  • Mahurpawar, M., 2015, Effects of heavy metals on human health, social issues and environmental problems. International Journal of Research 3(9), 1–7.
  • Akpor, O.B., Ohiobor, G.O. and Olaolu, T.D., 2014, Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Advances in Bioscience and Bioengineering 2(4), 37–43. doi:10.11648/j.abb.20140204.11
  • Hegazi, H.A., 2013, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. Housing and Building National Research Center, HBRC Journal 9, 276–282.
  • Akpor, O.B. and Muchie, M., 2010, Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. International Journal of the Physical Sciences 5(12), 1807–1817.
  • Rajendran, P., Muthukrishnan, J.M. and Gunasekaran, P., 2003, Microbes in heavy metal remediation. Indian Journal of Experimental Biology 41, 935–944.
  • Arbabi, M., Hemati, S. and Amiri, M., 2015, Removal of lead ions from industrial wastewater: a review of removal methods. International Journal of Epidemiologic Research 2(2), 105–109.
  • Abdel-Halim, S.H., Shehata, A.M.A. and El-Shahat, M.F., 2003, Removal of lead ions from industrial waste water by different types of natural materials. Water Research 37, 1678–1683. doi:10.1016/S0043-1354(03)00442-1
  • Farghali, A.A., Bahgat, M., Enaiet Allah, A. and Khedr, M.H., 2013, Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef University Journal of Basic and Applied Sciences 2, 61–71. doi:10.1016/j.bjbas.2013.01.001
  • Yarkandi, N.H., 2014, Removal of lead (II) from waste water by adsorption. International Journal of Current Microbiological Applied Sciences 3(4), 207–228.
  • Fan, L., Luo, C., Sun, M., Li, X. and Qiu, H., 2013, Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B: Biointerfaces 103, 523–529. doi:10.1016/j.colsurfb.2012.11.006
  • Brooks, R., Bahadory, M., Tovia, M. and Rostami, H., 2010, Removal of lead from contaminated water. International Journal of Soil, Sediment and Water 3(2), 1940–3259.
  • Li, Y.H., Di, Z., Ding, J., Wu, D., Luan, Z. and Zhu, Y., 2005, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research 39, 605–609. doi:10.1016/j.watres.2004.11.004
  • Fu, F. and Wang, Q., 2011, Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management 92, 407–418. doi:10.1016/j.jenvman.2010.11.011
  • Dada, E.O., Njoku, K.L., Osuntoki, A.A. and Akinola, M.O., 2015, A review of current techniques of in situ physico-chemical and biological remediation of heavy metals polluted soil. Ethiopian Journal of Environmental Studies & Management 8(5), 606–615. doi:10.4314/ejesm.v8i5.13
  • Ma, Y., Liu, Z., Xu, Y., Zhou, S., Wu, Y., Wang, J., Huang, Z. and Shi, Y., 2018, Remediating potentially toxic metal and organic co-contamination of soil by combining in situ solidification/stabilization and chemical oxidation: efficacy, mechanism and evaluation. International Journal of Environmental Research and Public Health 15(11), 2595. doi:10.3390/ijerph15061188
  • Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q. and Zeng, G., 2018, Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Science of the Total Environment 635, 92–99. doi:10.1016/j.scitotenv.2018.04.119
  • Sharma, S., Rana, S., Thakkar, A., Baldi, A., Murthy, R.S.R. and Sharma, R.K., 2016, Physical, chemical and phytoremediation technique for removal of heavy metals. Journal of Heavy Metal Toxicity and Diseases 1, 2–10.
  • Barakat, M.A., 2011, New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry 4, 361–377. doi:10.1016/j.arabjc.2010.07.019
  • Yao, Z., Li, J., Xie, H. and Yu, C., 2012, Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences 16, 722–729. doi:10.1016/j.proenv.2012.10.099
  • Wang, L., Ji, B., Hu, Y., Liu, R. and Sun, W., 2017, A review on in situ phytoremediation of mine tailings. Chemosphere 184, 594–600. doi:10.1016/j.chemosphere.2017.06.025
  • Ali, H., Khan, E. and Sajad, M.A., 2013, Phytoremediation of heavy metals–sconcepts and applications. Chemosphere 91, 869–881. doi:10.1016/j.chemosphere.2013.01.075
  • Karnib, M., Kabbani, A., Holail, H. and Olama, Z., 2014, Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 50, 113–120. doi:10.1016/j.egypro.2014.06.014
  • Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R. and Zhang, Z., 2016, Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety 126, 111–121. doi:10.1016/j.ecoenv.2015.12.023
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B. and Scheckel, K., 2014, Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? Journal of Hazardous Materials 266, 141–166. doi:10.1016/j.jhazmat.2013.12.018
  • Khalid, S., Shahid, M., KhanNiazi, N., Murtaza, B., Bibi, I. and Dumat, C., 2017, A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration 182, 247–268. doi:10.1016/j.gexplo.2016.11.021
  • Cristaldi, A., Conti, G.O., Jho, E.H., Zuccarello, P., Grasso, A., Copat, C. and Ferrante, M., 2017, Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation 8, 309–326. doi:10.1016/j.eti.2017.08.002
  • Zacchini, M., Pietrini, F., Mugnozza, G.S., Iori, V., Pietrosanti, L. and Massacci, A., 2009, Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, & Soil Pollution 197, 23–34. doi:10.1007/s11270-008-9788-7
  • Tangahu, B.V., Abdullah, S.R.S., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M., 2011, A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011, 1–32. doi:10.1155/2011/939161
  • Clemens, S., 2001, Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. International Journal of Occupational Medicine and Environmental Health 14, 235–239.
  • Tong, Y.P., Kneer, R. and Zhu, Y.G., 2004, Vacuolar compartmentalization: a second generation approach to engineering plants for phytoremediation. Trends in Plant Science 9, 7–9. doi:10.1016/j.tplants.2003.11.009
  • LeDuc, D.L. and Terry, N., 2005, Phytoremediation of toxic trace elements in soil and water. Journal of Industrial Microbiology and Biotechnology 32, 514–520. doi:10.1007/s10295-005-0227-0
  • Karami, A. and Shamsuddin, Z.H., 2010, Phytoremediation of heavy metals with several efficiency enhancer methods. African Journal of Biotechnology 9, 3689–3698.
  • Mukhopadhyay, S. and Maiti, S.K., 2010, Phytoremediation of metal enriched mine waste: a review. Global Journal of Environmental Research 4, 135–150.
  • Naees, M., Ali, Q., Shahbaz, M. and Ali, F., 2011, Role of rhizobacteria in phytoremediation of heavy metals: an overview. International Research Journal of Plant Science 2, 220–232.
  • Ramamurthy, A.S. and Memarian, R., 2012, Phytoremediation of mixed soil contaminants. Water, Air, & Soil Pollution 223, 511–518. doi:10.1007/s11270-011-0878-6
  • Sheoran, V., Sheoran, A.S. and Poonia, P., 2016, Factors affecting phytoextraction: a review. Pedosphere 26(2), 148–166. doi:10.1016/S1002-0160(15)60032-7
  • Babel, S. and Kurniawan, T.A., 2003, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Material 97(1–3), 219–243. doi:10.1016/S0304-3894(02)00263-7
  • Babel, S. and Kurniawan, T.A., 2004, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54(7), 951–967. doi:10.1016/j.chemosphere.2003.10.001
  • Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G. and Ahmad, M.N.M., 2010, Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. Journal of Hazardous Materials 176, 510–520. doi:10.1016/j.jhazmat.2009.11.059
  • Sepehrian, H., Ahmadi, S.J., Waqif-Husain, S., Faghihian, H. and Alighanbari, H., 2010, Adsorption studies of heavy metal ions on mesoporous aluminosilicate, novel cation exchanger. Journal of Hazardous Materials 176, 252–256. doi:10.1016/j.jhazmat.2009.11.020
  • Guo, H., Li, Y. and Kai Zhao, K., 2010, Arsenate removal from aqueous solution using synthetic siderite. Journal of Hazardous Materials 176, 174–180. doi:10.1016/j.jhazmat.2009.11.009
  • Renu, M.A. and Singh, K., 2017, Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination 7(4), 387–419. doi:10.2166/wrd.2016.104
  • Ansari, M., Aroujalian, A., Raisi, A., Dabir, B. and Fathizadeh, M., 2014, Preparation and characterization of nano-NaX zeolite by microwave assisted hydrothermal method. Advanced Powder Technology 25(2), 722–727. doi:10.1016/j.apt.2013.10.021
  • Ibrahim, H.S., Jamil, T.S. and Hegazy, E.Z., 2010, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models. Journal of Hazardous Materials 182(1), 842–847. doi:10.1016/j.jhazmat.2010.06.118
  • Aliabadi, M., Irani, M., Ismaeili, J., Piri, H. and Parnian, M.J., 2013, Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chemical Engineering Journal 220, 237–243. doi:10.1016/j.cej.2013.01.021
  • Choi, H.J., Yu, S.W. and Kim, K.H., 2016, Efficient use of Mg modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions. Journal of the Taiwan Institute of Chemical Engineers 63, 482–489. doi:10.1016/j.jtice.2016.03.005
  • Rad, L.R., Momeni, A., Ghazani, B., Irani, M., Mahmoudi, M. and Noghreh, B., 2014, Removal ofNi2þ and Cd2þ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chemical Engineering Journal 256, 119–127. doi:10.1016/j.cej.2014.06.066
  • Djukic, A., Jovanovic, U., Tuvic, T., Andric, V., Novakovic, J.G., Ivanovic, N. and Matovic, L., 2013, The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: simultaneous sorption of Ni, Cr, Cd and Pb ions. Ceramics International 39(6), 7173–7178. doi:10.1016/j.ceramint.2013.02.061
  • Sdiri, A., Higashi, T., Jamoussi, F. and Bouaziz, S., 2012, Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. Journal of Environmental Management 93(1), 245–253. doi:10.1016/j.jenvman.2011.08.002
  • Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G. and Kim, S.J., 2015, Removal of heavy metal ions from pharmaeffluents using graphene-oxide nanosorbents and study of their adsorption kinetics. Journal of Industrial and Engineering Chemistry 30, 14–19. doi:10.1016/j.jiec.2015.06.005
  • Anirudhan, T.S. and Sreekumari, S.S., 2011, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Journal of Environmental Sciences 23(12), 1989–1998. doi:10.1016/S1001-0742(10)60515-3
  • Sabzoi, N., Yong, E.K., Jayakumar, N.S., Sahu, J.N., Ganesan, P., Mubarak, N.M. and Mazari, S.A., 2015, An optimisation study for catalytic hydrolysis of oil palm shell using response surface methodology. Journal of Oil Palm Research 27(4), 339–351.
  • Thangalazhy-Gopakumar, S., Al-Nadheri, W.M.A., Jegarajan, D., Sahu, J.N., Mubarak, N.M. and Nizamuddin, S., 2015, Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresource Technology 178, 65–69. doi:10.1016/j.biortech.2014.09.068
  • Sardella, F., Gimenez, M., Navas, C., Morandi, C., Deiana, C. and Sapag, K., 2015, Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium. Journal of Environmental Chemical Engineering 3(1), 253–260. doi:10.1016/j.jece.2014.06.026
  • Lo, S.F., Wang, S.Y., Tsai, M.J. and Lin, L.D., 2012, Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research and Design 90(9), 1397–1406. doi:10.1016/j.cherd.2011.11.020
  • Diaz-Tena, E., Rodríguez-Ezquerro, A., López de Lacalle Marcaide, L.N., Bustinduy, L.G. and Sáenz, A.E., 2013, Use of extremophiles microorganisms for metal removal. Procedia Engineering 63, 67–74. doi:10.1016/j.proeng.2013.08.197
  • Kampalanonwatb, P. and Pitt Supaphol, P., 2014, The study of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofiber mats. Energy Procedia 56, 142–151. doi:10.1016/j.egypro.2014.07.142
  • Singh, A.S. and Guleri, A., 2015, Utility of chemically modified agricultural waste okra biomass for removal of toxic heavy metal ions from aqueous solution. Engineering in Agriculture, Environment and Food 8(1), 52–60. doi:10.1016/j.eaef.2014.08.001
  • Bayat, B., 2002, Comparative study of adsorption properties of Turkish fly ashes I. The case of nickel(II), copper(II) and zinc(II). Journal of Hazardous Materials B 95, 251–273. doi:10.1016/S0304-3894(02)00140-1
  • Tripathi, A. and Ranjan, M.E., 2015, Heavy metal removal from wastewater using low cost adsorbents. Journal of Bioremediation & Biodegradation 6, 315–321. doi:10.4172/2155-6199.1000315
  • Mohan, D. and Singh, K.P., 2002, Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse – An agricultural waste. Water Research 36, 2304–2318. doi:10.1016/S0043-1354(01)00447-X
  • Khan, N.A., Ali, S.I. and Ayub, S., 2001, Effect of pH on the removal of chromium (Cr) (VI) by sugar cane baggase. Science and Technology 6, 13–19.
  • Ayub, S., Ali, S.I. and Khan, N.A., 2001, Study on the removal of Cr(VI) by sugarcane bagasse from wastewater. Pollution Research 2(2), 233–237.
  • Ullah, I., Nadeem, R., Iqbal, M. and Manzoor, Q., 2013, Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecological Engineering 60, 99–107. doi:10.1016/j.ecoleng.2013.07.028
  • Ahmad, W.A., Ahmad, W.H.W., Karim, N.A., Raj, A.S. and Zakaria, Z.A., 2013, Cr (VI) reduction in naturally rich growth medium and sugarcane bagasse by acinetobacter haemolyticus. International Biodeterioration & Biodegradation 85, 571–576. doi:10.1016/j.ibiod.2013.01.008
  • Asadi, F., Shariatmadari, H. and Mirghaffari, N., 2008, Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater. Journal of Hazardous Materials 154, 451–458. doi:10.1016/j.jhazmat.2007.10.046
  • Akunwa, N.K., Muhammad, M.N. and Akunna, J.C., 2014, Treatment of metal-contaminated wastewater: a comparison of low-cost biosorbents. Journal of Environmental Management 146, 517–523. doi:10.1016/j.jenvman.2014.08.014
  • Bulut, Y. and Tez, Z., 2007, Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences 19, 160–166. doi:10.1016/S1001-0742(07)60026-6
  • Tan, W.T., Ooi, S.T. and Lee, C.K., 1993, Removal of chromium (VI) from solution by coconut husk and palm pressed fiber. Environmental Technology 14, 277–282. doi:10.1080/09593339309385290
  • Lubbad, S.H., Abu–Saqer, K.K. and Kodeh, F.S., 2018, Ultrafast and highly efficient removal of malachite green from aqueous solution by latvia-originated sphagnum peat moss sorbent applying dispersive solid-phase extraction. International Journal of Environmental Research 12(3), 279–288. doi:10.1007/s41742-018-0090-2
  • Lubbad, S.H., Abu Al–Roos, B.K. and Kodeh, F.S., 2019, Adsorptive–Removal of bromothymol blue as acidic–Dye probe from water solution using Latvian sphagnum peat moss: thermodynamic assessment, kinetic and isotherm modelling. Current Green Chemistry 6(1), 53–61. doi:10.2174/2452273203666190114144546
  • Safi, J.M., Yassin, M.M., El-Nahhal, Y.Z., Abed, Y.A., Safi, M.J. and Suleiman, H.D., 2019, Childhood lead poisoning in gaza strip, the Palestinian authority. Journal of Trace Elements in Medicine and Biology 54, 118–125. doi:10.1016/j.jtemb.2019.04.004
  • Abu–Saqer, K.K. and Lubbad, S.H., 2019, Assessment of various treatment methods and reagents for cleanup and conditioning of sphagnum peat moss as sorbents in removal of malachite green as a cationic organic–Dye probe from water. SN Applied Sciences 1, 1–10. doi:10.1007/s42452-018-0021-z
  • Abu Al–Roos, B.K., Lubbad, S.H. and Abu–Saqer, K.K., 2019, Assessment of thermally treated sphagnum peat moss sorbents for removal of phenol red, bromothymol blue and malachite green from aqueous solution. International Journal of Environmental Studies 76(5), 861–872. doi:10.1080/00207233.2019.1630102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.