84
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Softening of tap water via calcium removal using sphagnum peat moss sorbent by batch and flow-through approaches

&

References

  • Sengupta, P., 2013, Potential health impacts of hard water. International Journal of Preventive Medicine 4(8), 866–875.
  • Gopinath, S., Srinivasamoorthy, K., Saravanan, K., Prakash, R., Suma, C.S., Khan, F., Senthilnathan, D., Sarmaand, V.S., and Devi, P., 2015, Hydrogeochemical characteristics of coastal groundwater in Nagapattinam and Karaikal aquifers: Implications for saline intrusion and agricultural suitability. Journal of Coastal Sciences 2(2), 1–11.
  • Sarath, P., Magesh, N.S., Jitheshlal, K.V., Chandrasekarand, N., and Gangadhar, K., 2012, Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science 2(3), 165–175. doi:10.1007/s13201-012-0042-5
  • Abeliotis, K., Candan, C., Amberg, C., Ferri, A., Osset, M., Owens, J., and Stamminger, R., 2015, Impact of water hardness on consumers’ perception of laundry washing result in five European countries. International Journal of Consumer Studies 39, 60–66. doi:10.1111/ijcs.12149
  • Akram, S. and Rehman, F., 2018, Hardness in drinking-water, its sources, its effects on humans and its household treatment. Journal of Chemical Applications 4(1), 1–4.
  • Mahurpawar, M., 2015, Effects of heavy metals on human health, social issues and environmental problems. International Journal of Research 3(9), 1–7.
  • Akpor, O.B., Ohiobor, G.O., and Olaolu, T.D., 2014, Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Advances in Bioscience and Bioengineering 2(4), 37–43. doi:10.11648/j.abb.20140204.11
  • Hegazi, H.A., 2013, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. Housing and Building National Research Center, HBRC Journal 9, 276–282.
  • Akpor, O.B. and Muchie, M., 2010, Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. International Journal of the Physical Sciences 5(12), 1807–1817.
  • Lubbad, S.H. and Al-Batta, S.N., 2019, Ultrafast remediation of lead-contaminated water applying sphagnum peat moss by dispersive solid-phase extraction. International Journal of Environmental Studies, 1–16. doi:10.1080/00207233.2019.1674582.
  • Ramya, P., Babu, A.J., Reddy, E.T., and Rao, L.V., 2015, A study on the estimation of hardness in ground water samples by EDTA titrimetric methods. International Journal of Recent Scientific Research 6(6), 4505–4507.
  • Kamlesh, and Kidwai, M.K., 2018, Review on chemical and biological aspects of hardness in water. Indian Journal of Environmental Sciences 22(1), 1–15.
  • Arabi, A.S., Funtua, I.I., Dewu, B.B.M., Garba, M.L., Okoh, S., Kwaya, M.Y., and Bolori, M.T., 2013, Assessment of calcium and magnesium concentrations in groundwater as supplements for sleep related ailments. Journal of Applied Environmental and Biological Sciences 3(7), 29–35.
  • Rolence, C., Machunda, R.L., and Njau, K.N., 2014, Water hardness removal by coconut shell activated carbon. International Journal of Science, Technology and Society 2(5), 97–102. doi:10.11648/j.ijsts.20140205.11
  • Neri, L.C., Johansen, H.L., Hewitt, D., Marier, J., and Langner, N., 1985, Magnesium and certain other elements and cardiovascular disease. Science of the Total Environment 42, 49–75. doi:10.1016/0048-9697(85)90007-5
  • Alfy, M.A., Lashin, A., Abdalla, F., and Al-Bassam, A., 2017, Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques. Environmental Pollution 229, 760–770. doi:10.1016/j.envpol.2017.05.052
  • Rasool, A., Xiao, T., Baig, Z., Masood, S., Mostofa, K., and Iqbal, M., 2015, Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: Source discrimination and health risk assessment. Environmental Science and Pollution Research 22, 19729–19746. doi:10.1007/s11356-015-5159-2
  • Singh, C.K. and Mukherjee, S., 2015, Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India. Environmental Science and Pollution Research Journal 22, 2668–2678. doi:10.1007/s11356-014-3504-5
  • Sanjuana, I., Benavente, D., Exposito, E., and Montie, V., 2019, Electrochemical water softening: Influence of water composition on the precipitation behavior. Separation and Purification Technology 211(18), 857–865. doi:10.1016/j.seppur.2018.10.044
  • Cetin, G., 2014, Removal of hardness of earth alkaline metals from aqueous solutions by ion exchange method. ISRN Analytical Chemistry 2014, 1–7. doi:10.1155/2014/621794
  • Crist, R.H., Martin, J.R., and Chonko, J., 1996, Uptake of metals on peat moss: An ion-exchange process. Environmental Science and Technology 30(8), 2456–2461. doi:10.1021/es950569d
  • Agostinho, L.C.L., Nascimento, L., and Cavalcanti, B.F., 2002, Water hardness removal for industrial use: Application of the electrolysis process. Open Access Scientific Reports 1(9), 1–5.
  • Bodzek, M., Konieczny, K., and Kwiecinska, A., 2011, Application of membrane processes in drinking water treatment–state of art. Desalination and Water Treatment 35(1–3), 164–184. doi:10.5004/dwt.2011.2435
  • Haddad, M., Bazinet, L., Savadogo, O., and Paris, J., 2017, Electrochemical acidification of Kraft black liquor: Impacts of pulsed electric field application on bipolar membrane colloidal fouling and process intensification. Journal of Membrane Science 524, 482–492. doi:10.1016/j.memsci.2016.10.043
  • Malaeb, L. and Ayoub, G., 2011, Reverse osmosis technology for water treatment: State of the art review. Desalination 267(1), 1–8. doi:10.1016/j.desal.2010.09.001
  • Ruiz-Garcia, A., Melian-Martel, N., and Nuez, I., 2017, Short review on predicting fouling in RO desalination. Membranes (Basel) 7(4), 62–79. doi:10.3390/membranes7040062
  • Li, H., Yu, P., and Luo, Y., 2015, Fouling mechanisms and primary foulant constituents in reverse osmosis membrane reclamation of a petrochemical secondary effluent. Desalination and Water Treatment 54(12), 3200–3210. doi:10.1080/19443994.2014.910138
  • Abu Al–Roos, B.K., Lubbad, S.L., and Abu–Saqer, K.K., 2019, Assessment of thermally treated sphagnum peat moss sorbents for removal of phenol red, bromothymol blue and malachite green from aqueous solution. International Journal of Environmental Studies 76(5), 861–872. doi:10.1080/00207233.2019.1630102
  • Lubbad, S.L., Abu Al–Roos, B.K., and Kodeh, F.S., 2019, Adsorptive–removal of bromothymol blue as acidic–dye probe from water solution using Latvian sphagnum peat moss: Thermodynamic assessment, kinetic and isotherm modelling. Current Green Chemistry 6(1), 53–61. doi:10.2174/2452273203666190114144546
  • Lubbad, S.H., Abu-Saqer, K.K., and Kodeh, F.S., 2018, Ultrafast and highly efficient removal of malachite green from aqueous solution by Latvia-originated sphagnum peat moss sorbent applying dispersive solid-phase extraction. International Journal of Environmental Research 12(3), 279–288. doi:10.1007/s41742-018-0090-2
  • Abu–Saqer, K.K. and Lubbad, S.H., 2019, Assessment of various treatment methods and reagents for cleanup and conditioning of sphagnum peat moss as sorbents in removal of malachite green as a cationic organic–dye probe from water. SN Applied Sciences 1, 1–10. doi:10.1007/s42452-018-0021-z
  • Kazakis, N., Pavlou, A., Vargemezis, G., Voudouris, K.S., Soulios, G., Pliakas, F., and Tsokas, G., 2016, Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Science of the Total Environment 543(A), 373–387. doi:10.1016/j.scitotenv.2015.11.041
  • Jeddizahed, J. and Rostami, B., 2016, Experimental investigation of injectivity alteration due to salt precipitation during CO sequestration in saline aquifers. Advances in Water Resources 96, 23–33. doi:10.1016/j.advwatres.2016.06.014
  • Ketabchi, H., Mahmoodzadeh, D., and Ataie-Ashtiani, B., 2016, Groundwater travel time computation for two-layer islands. Hydrogeology Journal 24(4), 1045–1055. doi:10.1007/s10040-015-1347-x
  • Gharbia, A.S., Gharbia, S.S., Abushbak, T., Wafi, H., Aish, A., Zelenakova, M., and Pilla, F., 2016, Groundwater quality evaluation using GIS based geostatistical algorithms. Journal of Geoscience and Environment Protection 4, 89–103. doi:10.4236/gep.2016.42011
  • Shevah, Y., 2017, Challenges and solutions to water problems in the Middle East. In: S. Ahuja (Ed.) Chemistry and Water (Amsterdam: Elsevier), pp. 207–258.
  • Goha, P.S., Matsuura, T., Ismail, A.F., and Hilal, N., 2016, Recent trends in membranes and membrane processes for desalination. Desalination 391, 43–60. doi:10.1016/j.desal.2015.12.016
  • Warsinger, D.M., Swaminathan, J., Guillen-Burrieza, J., Arafat, H.A., John, H., and Lienhard, V., 2015, Scaling and fouling in membrane distillation for desalination applications: A review. Desalination 356, 294–313. doi:10.1016/j.desal.2014.06.031
  • Matina, A., Rahman, F., Shafi, H.Z., and Zubair, S.M., 2019, Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions. Desalination 455, 135–157. doi:10.1016/j.desal.2018.12.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.