108
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Adsorptive removal of veterinary antibiotics from water using an integrated photocatalyst (IPCA)

ORCID Icon, , &

References

  • Kümmerer, K., 2010, Pharmaceuticals in the environment. Annual Review of Environment and Resources 35(1), 57–75. doi: 10.1146/annurev-environ-052809-161223.
  • Chollom, M., Rathilal, S., Swalaha, F., and Bakare, B., 2018, Fate, transport, and toxicity of veterinary antimicrobials with an insight on Africa: A review. Ecology, Environment and Conservation 24(3), 1201–1220.
  • Grote, B., 2012, Application of advanced oxidation processes (aop) in water treatment. Presented at the 37th Annual Qld Water Industry Operations Workshop, Parklands, Gold Coast, pp. 17–23.
  • Suzuki, H., Araki, S., and Yamamoto, H., 2015, Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water. Journal of Water Process Engineering 7, 54–60. doi: 10.1016/j.jwpe.2015.04.011.
  • Chollom, M., Rathilal, S., Swalaha, F., and Bakare, B., 2018, Degradation of veterinary antibiotics from slaughterhouse wastewater using titanium dioxide as a catalyst. Presented at the 10th International Conference on Sustainable Development and Planning, Siena, Italy.
  • He, Y., Sutton, N.B., Rijnaarts, H.H.H., and Langenhof, A.A.M., 2016, Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental 182, 132–141. doi: 10.1016/j.apcatb.2015.09.015.
  • Chong, M.N., Jin, B., Chow, C.W., and Saint, C., 2010, Recent developments in photocatalytic water treatment technology: A review. Water Research 44(10), 2997–3027. doi: 10.1016/j.watres.2010.02.039.
  • Ibhadon, A. and Fitzpatrick, P., 2013, Heterogeneous photocatalysis: Recent advances and applications. Catalysts 3(1), 189–218. doi: 10.3390/catal3010189.
  • Srikanth, B., Goutham, R., Badri Narayan, R., Ramprasath, A., Gopinath, K.P., and Sankaranarayanan, A.R., 2017, Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. Journal of Environmental Management 200, 60–78. doi: 10.1016/j.jenvman.2017.05.063.
  • Lim, -T.-T., Yap, P.-S., Srinivasan, M., and Fane, A.G., 2011, TiO2/AC composites for synergistic adsorption-photocatalysis processes: Present challenges and further developments for water treatment and reclamation. Critical Reviews in Environmental Science and Technology 41(13), 1173–1230. doi: 10.1080/10643380903488664.
  • Gao, B., Yap, P.S., Lim, T.M., and Lim, -T.-T., 2011, Adsorption-photocatalytic degradation of acid red 88 by supported TiO2: Effect of activated carbon support and aqueous anions. Chemical Engineering Journal 171(3), 1098–1107. doi: 10.1016/j.cej.2011.05.006.
  • Dlamini, C.P., 2016, Evaluation of Micro-scaled TiO2 on Degradation and Recovery of mTiO2 from Treated Drinking Water (Durban: Durban University of Technology), p. 171.
  • Basha, S., Keane, D., Morrissey, A., Nolan, K., Oelgemöller, M., and Tobin, J., 2010, Studies on the adsorption and kinetics of photodegradation of pharmaceutical compound, indomethacin using novel photocatalytic adsorbents (IPCAs). Industrial & Engineering Chemistry Research 49, 11302–11309. doi: 10.1021/ie101304a.
  • Dada, A.O., Olalekan, A.P., Olatunya, A.M., and Dada, O., 2012, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. Journal of Applied Chemistry 3(1), 38–45.
  • Peng, X., Hu, F., Lam, F.L., Wang, Y., Liu, Z., and Dai, H., 2015, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. Journal of Colloid and Interface Science 460, 349–360. doi: 10.1016/j.jcis.2015.08.050.
  • Keane, D., Basha, S., Nolan, K., Morrissey, A., Oelgemöller, M., and Tobin, J.M., 2010, Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study. Catalysis Letters 141(2), 300–308. doi: 10.1007/s10562-010-0485-y.
  • Li, Y., Chen, J., Liu, J., Ma, M., Chen, W., and Li., L., 2010, Activated carbon supported TiO2-photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor. Journal of Environmental Sciences 22(8), 1290–1296. doi: 10.1016/S1001-0742(09)60252-7.
  • Yu, F., Li, Y., Han, S., and Ma, J., 2016, Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153, 365–385. doi: 10.1016/j.chemosphere.2016.03.083.
  • Fu, H., Li, X., Wang, J., Lin, P., Chen, C., Zhang, X., and Suffet, I.H.M., 2017, Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. Journal of Environmental Sciences 56, 145–152. doi: 10.1016/j.jes.2016.09.010.
  • Safari, G.H., Hoseini, M., Seyedsalehi, M., Kamani, H., Jaafari, J., and Mahvi, A.H., 2014, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. International. Journal of Environmental Science and Technology 12(2), 603–616.
  • Jang, H.M., Yoo, S., Choi, Y.K., Park, S., and Kan, E., 2018, Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresoure Technology 259, 24–31. doi: 10.1016/j.biortech.2018.03.013.
  • Ahmed, M.B., Zhou, J.L., Ngo, H.H., and Guo, W., 2015, Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Science of the Total Environment 532, 112–126. doi: 10.1016/j.scitotenv.2015.05.130.
  • Chen, W.R. and Huang, C.H., 2010, Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere 79(8), 779–785. doi: 10.1016/j.chemosphere.2010.03.020.
  • Nasuhoglu, D., Yargeau, V., and Berk, D., 2011, Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (lambdamax=254 nm). Journal of Hazardous Materials 186(1), 67–75. doi: 10.1016/j.jhazmat.2010.10.080.
  • Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Johir, M.A.H., and Sornalingam, K., 2017, Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal 311, 348–358. doi: 10.1016/j.cej.2016.11.106.
  • Elmolla, E.S. and Chaudhuri, M., 2010, Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. Journal of Hazardous Materials 173(1), 445–449. doi: 10.1016/j.jhazmat.2009.08.104.
  • Zhang, X., Guo, W., Ngo, H.H., Wen, H., Li, N., and Wu, W., 2016, Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management 172, 193–200. doi: 10.1016/j.jenvman.2016.02.038.
  • Akhtar, J., Amin, N.A.S., and Shahzad, K., 2015, A review on removal of pharmaceuticals from water by adsorption. Desalination and Water Treatment 57(27), 12842–12860. doi: 10.1080/19443994.2015.1051121.
  • Pouretedal, H.R. and Sadegh, N., 2014, Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. Journal of Water Process Engineering 1, 64–73. doi: 10.1016/j.jwpe.2014.03.006.
  • Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., and Ismadji, S., 2009, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research 43(9), 2419–2430. doi: 10.1016/j.watres.2009.02.039.
  • Chen, Y., Lan, T., Duan, L., Wang, F., Zhao, B., Zhang, S., and Wei, W., 2015, Adsorptive removal and adsorption kinetics of fluoroquinolone by nano-hydroxyapatite. PloS One 10(12), e0145025. doi: 10.1371/journal.pone.0145025.
  • Ahmed, M.J., 2017, Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environmental Toxicology and Pharmacology 50, 1–10. doi: 10.1016/j.etap.2017.01.004.
  • Kumar, A., Kumar, S., and Kumar, S., 2003, Adsorption of resorcinol and catechol on granular activated carbon: Equilibrium and kinetics. Carbon 41(15), 3015–3025. doi: 10.1016/S0008-6223(03)00431-7.
  • Sikarwar, S. and Jain, R., 2016, Adsorption kinetics studies of an anti-inflammatory drug Mesalamine using Unsaturated Polyester Resin (UPR). Journal of Molecular Liquids 224, 219–226. doi: 10.1016/j.molliq.2016.09.107.
  • Le-Minh, N., Khan, S.J., Drewes, J.E., and Stuetz, R.M., 2010, Fate of antibiotics during municipal water recycling treatment processes. Water Research 44(15), 4295–4323. doi: 10.1016/j.watres.2010.06.020.
  • Choy, K.K.H., Porter, J.F., and Mckay, G., 2004, Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon. Chemical Engineering Journal 103(1–3), 133–145. doi: 10.1016/j.cej.2004.05.012.
  • Fernández, A., Lassaletta, G., Jiménez, V.M., Justo, A., González-Elipe, A.R., Herrmann, J.M., Tahiri, H., and Ait-Ichou, Y., 1995, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental 7(1), 49–63. doi: 10.1016/0926-3373(95)00026-7.
  • Kanakaraju, D., Kockler, J., Motti, C.A., Glass, B.D., and Oelgemöller, M., 2015, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Applied Catalysis B: Environmental 166–167, 45–55. doi: 10.1016/j.apcatb.2014.11.001.
  • Li, Y., Zhang, S., Yu, Q., and Yin, W., 2007, The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method. Applied Surface Science 253(23), 9254–9258. doi: 10.1016/j.apsusc.2007.05.057.
  • Mukherjee, D., Barghi, S., and Ray, A., 2013, Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light. Processes 2(1), 12–23. doi: 10.3390/pr2010012.
  • Chong, M.N., Tneu, Z.Y., Poh, P.E., Jin, B., and Aryal, R., 2015, Synthesis, characterisation and application of TiO2–zeolite nanocomposites for the advanced treatment of industrial dye wastewater. Journal of the Taiwan Institute of Chemical Engineers 50, 288–296. doi: 10.1016/j.jtice.2014.12.013.
  • Murgolo, S., Yargeau, V., Gerbasi, R., Visentin, F., El Habra, N., Ricco, G., Lacchetti, I., Carere, M., Curri, M.L., and Mascolo, G., 2017, A new supported TiO2 film deposited on stainless steel for the photocatalytic degradation of contaminants of emerging concern. Chemical Engineering Journal 318, 103–111. doi: 10.1016/j.cej.2016.05.125.
  • Dimitrakopoulou, D., Rethemiotaki, I., Frontistis, Z., Xekoukoulotakis, N.P., Venieri, D., and Mantzavino, D., 2012, Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO(2) photocatalysis. Journal of Environmental Management 98, 168–174. doi: 10.1016/j.jenvman.2012.01.010.
  • Adamek, E., Baran, W., and Sobczak, A., 2016, Photocatalytic degradation of veterinary antibiotics: Biodegradability and antimicrobial activity of intermediates. Process Safety and Environmental Protection 103, 1–9. doi: 10.1016/j.psep.2016.06.015.
  • Abellán, M.N., Giménez, J., and Esplugas, S., 2009, Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim. Catalysis Today 144(1–2), 131–136. doi: 10.1016/j.cattod.2009.01.051.
  • Mecha, A.C., Onyango, M.S., Ochieng, A., Fourie, C.J.S., and Momba, M.N.B., 2016, Synergistic effect of UV–vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: A comparative study. Journal of Catalysis 341, 116–125. doi: 10.1016/j.jcat.2016.06.015.
  • Elmolla, E.S. and Chaudhuri, M., 2010, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252(1–3), 46–52. doi: 10.1016/j.desal.2009.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.