78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

NO2 catalytic removal by nickel catalyst supported on multi-walled carbon nanotubes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Loai, A, 2015, Fabrication ET test d’un catalyseur d’acide sulfonique approprié pour la réaction de production des biocarburants. Afrique Science 11(6), 349–358. ( Abstract only, in French).
  • Marcano, S.C., Bensaid, S., Deorsola, F.A., Russo, N., and Fino, D., 2015, Multifunctional catalyst based on BaO/Pt/CeO2 for NO2 assisted soot abatement and NOx storage. Fuel 149(2), 78–84. doi: 10.1016/j.fuel.2014.09.063
  • Yang, W.F., Hsing, H.J., Yang, Y.C., and Shyng, J.Y., 2007, The effects of selected parameters on the nitric oxide removal by biofilter. Journal of Hazardous Materials 148(3), 653–659. doi: 10.1016/j.jhazmat.2007.03.023
  • Tang, X., Xu, X., Yi, H., Chen, C., and Wang, C., 2013, Recent developments of electrochemical promotion of catalysis in the techniques of De NOx. The Scientific World Journal 2013, 1–13.
  • Leray, A., Khacef, A., Makarov, M., and Cormier, J.M.; 2011, Diesel oxidation catalyst combined to non-thermal plasma: Effect on activation catalyst temperature and by-products formation. 20th International Symposium on Plasma Chemistry; Philadelphia, United States. July 1-4.
  • Jebeli, M., Golbabaei, F., Ghorbanzadeh, A., and Yarahmadi, R., 2011, Elimination of carbon monoxide using non-thermal plasma. Iran Occupational Health 13(3), 1–11. In Persian, English abstract.
  • Li, Q., Yang, H., Ma, Z., and Zhang, X., 2012, Selective catalytic reduction of NO with NH3 over CuOx-carbonaceous materials. Catalysis Communications 1792, 8–12.
  • Yang, R., Cui, Y., Yan, Q., Zhang, C., Qiu, L., O’Hare, D., et al, 2017, Design of highly efficient NOx storage-reduction catalysts from layered double hydroxides for NOx emission control from naphtha cracker flue gases. Chemical Engineering Journal 326, 656–666. 10.1016/j.cej.2017.06.016
  • Easterling, V.G.; 2013. The effects of ceria addition on aging and sulfation of lean NOx traps for stand-alone and LNT-SCR applications. Doctoral thesis, University of Kentucky, Lexington, Kentucky, United States.
  • Ohtsuka, H., 2001, the selective catalytic reduction of nitrogen oxides by methane on noble metal-loaded sulfated zirconia. Applied Catalysis B: Environmental 33(4), 325–333. doi: 10.1016/S0926-3373(01)00190-4
  • Pan, X., Fan, Z., Chen, W., Ding, Y., Luo, H., and Bao, X., 2007, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nature Materials 6(7), 507–511. doi: 10.1038/nmat1916
  • Aljerf, L. and Nadra, R., 2019, developed a greener method based on MW implementation in manufacturing CNFs. International Journal of Nanomanufacturing 15(3), 269–289. doi: 10.1504/IJNM.2019.100461
  • Veziri, C.M., Karanikolos, G., Pilatos, G., Vermisoglou, E., Giannakopoulos, K., et al, 2009, Growth and morphology manipulation of carbon nanostructures on porous supports. Carbon 47(9), 2161–2173. doi: 10.1016/j.carbon.2009.03.064
  • Avalos, L., Bustos, V., Uñac, R., Zaera, F., and Zgrablich, G., 2006, Dynamic monte carlo simulation of the NO+ CO reaction on Rh (111). The Journal of Physical Chemistry B] 110(49), 24964–24971. doi: 10.1021/jp064967m
  • Nakai, I., Kondoh, H., Shimada, T., Nagasaka, M., Yokota, R., et al, 2009, Mechanism of N+ NO reaction on Rh (111) surfaces: A precursor-mediated reaction. The Journal of Physical Chemistry C 113(30), 13257–13265. doi: 10.1021/jp902583x
  • Yu, L. and Li, N., 2019, Noble metal nanoparticles-based colorimetric biosensor for visual quantification: A mini-review. Chemosensors 7(4), 53. doi: 10.3390/chemosensors7040053
  • Vermisoglou, E.C., Romanos, G.E., Karanikolos, G.N., and Kanellopoulos, N.K., 2011, Catalytic NOx removal by single-wall carbon nanotube-supported Rh nanoparticles. Journal of Hazardous Materials 194, 144–155. doi: 10.1016/j.jhazmat.2011.07.078
  • Agostino, C., Chansai, S., Bush, I., Gao, C., Mantle, M.D., Hardacre, C., et al, 2016, Assessing the effect of reducing agents on the selective catalytic reduction of NOx over Ag/Al2O3 catalysts. Catalysis Science & Technology 6(6), 1661–1666. doi: 10.1039/C5CY01508A
  • Xiong, S., Liao, Y., Xiao, X., Dang, H., and Yang, S., 2015, the Novel effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over MnOx-CeO2: Mechanism and kinetic study. The Journal of Physical Chemistry C 119(8), 4180–4187. doi: 10.1021/jp512407k
  • Dasireddy, V.D.B.C. and Likozar, B., 2017, Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT). Chemical Engineering Journal 326, 886–900. doi: 10.1016/j.cej.2017.06.019
  • Reddy, A.L.M., Shaijumon, M.M., Rajalakshmi, N., and Ramaprabhu, S., 2010, Performance of proton exchange membrane fuel cells using Pt/MWNT–Pt/C composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Fuel Cell Science and Technology 7(2), 021001–021007. doi: 10.1115/1.3176215
  • Lordi, V., Yao, N., and Wei, J., 2011, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chemistry of Materials 13(3), 733–737. doi: 10.1021/cm000210a
  • Blanco, J., Avila, P., Suárez, S., Yates, M., Martin, J.A., Marzo, L., et al, 2004, CuO/NiO monolithic catalysts for NOx removal from nitric acid plant flue gas. Chemical Engineering Journal 97(1), 1–9. doi: 10.1016/S1385-8947(03)00085-8
  • Maddox, M. and Gubbins, K., 1995, Molecular simulation of fluid adsorption in buckytubes. Langmuir (American Chemical Society) 1110, 3988–3996.
  • Joung, H.J., Kim., J.H., Oh, J.S., You., D.W., Park., H.O., and Jung, K.W., 2011, Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Applied Surface Science 290, 267–273. doi: 10.1016/j.apsusc.2013.11.066
  • Ko., E.Y., Seo ., K.W., Lee ., H.C., Lee., D., and Kim ., S., 2006, Pt-Ni/Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream. Catalysis Letters 110(3–4), 275–279. doi: 10.1007/s10562-006-0121-z
  • Xu, Y. and Lin, X., 2007, Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis. Electrochimica Acta 52(16), 5140–5149. doi: 10.1016/j.electacta.2007.02.037
  • Soundararajan, D., Yoon, J., Kim, Y.I., Kwon, J.S., Park, C.W., et al, 2009, Vertically aligned CdSe and Zn-doped CdSe nanorod arrays grown directly on FTO coated glass: Synthesis and characterization. International Journal of Electrochemical Science 4(6), 1628–1637.
  • Rosado, G., Verde, Y., Valenzuela-Muñiz, A., Barbosa, R., Yoshida, M.M., and Escobar, B., 2016, Catalytic activity of Pt-Ni nanoparticles supported on multi-walled carbon nanotubes for the oxygen reduction reaction. International Journal of Hydrogen Energy 41(48), 23260–23671. doi: 10.1016/j.ijhydene.2016.07.098
  • Lu, S., Zhang, C., and Liu, Y., 2011, Carbon nanotube supported Pt–Ni catalysts for preferential oxidation of CO in hydrogen-rich gases. International Journal of Hydrogen Energy 36(3), 1939–1948. doi: 10.1016/j.ijhydene.2010.11.029
  • Qi, G. and Yang, R.T., 2013, Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. Journal of Catalysis 217(2), 434–441. doi: 10.1016/S0021-9517(03)00081-2
  • Pan, S., Luo, H., Li, L., Wei, Z., and Huang, B., 2013, H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3. Journal of Molecular Catalysis A: Chemical 377, 154–161. doi: 10.1016/j.molcata.2013.05.009
  • Veraart, A.J.; 2012, Denitrification in ditches, streams, and shallow lakes. Doctoral thesis, Wageningen University, Netherlands.
  • Shrestha, K.P., Seidel, L., Mauß, F., and Zeuch, T.; 2018, Development of a kinetic mechanism for NOx fuel interaction. Joint Meeting the German and Italian Sections of the Combustion Institute, Sorrento, Italy.
  • Darake, S., Rahimi, A., Hatamipour, M.S., and Hamzeloui, P., 2014, SO2 removal by seawater in a packed–bed tower: Experimental study and mathematical modeling. Separation Science and Technology 49(7), 988–998. doi: 10.1080/01496395.2013.872660
  • Yang, T.T., Bi, H.T., and Cheng, X., 2011, Effects of O2, CO2, and H2O on NOx adsorption and selective catalytic reduction over Fe/ZSM-5. Applied Catalysis B: Environmental 102(1–2), 163–171. doi: 10.1016/j.apcatb.2010.11.038
  • Salem, I., Courtois, X., Corbos, E., Marecot, P., and Duprez, D., 2011, NO conversion in presence of O2, H2O and SO2: Improvement of a Pt/Al2O3 catalyst by Zr and Sn, and influence of the reducer C3H6 or C3H8. Catalysis Communications 9(5), 664–669. doi: 10.1016/j.catcom.2007.07.034
  • Xu, G., Yu, Y., and He, H., 2018, A low-temperature route triggered by water vapor during the ethanol-SCR of NOx over Ag/Al2O3. American Chemical Society Catalysis 84, 2699–2708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.