44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of flocculated sewage sludge for growing miscanthus on post-mining lands

ORCID Icon, , , , ORCID Icon &

References

  • Volungevičius, J., Feiza, V. Amalevičiūtė-Volungė, K., et al., 2019, Transformations of different soils under natural and anthropogenized land management. Zemdirbyste-Agriculture 106(1), 3–14. doi:10.13080/z-a.2019.106.001.
  • Velichka, R., Rimkevichene, M. and Martsinkyavichene, A., 2006, Changes in the properties of a loamy Gleyic Cambisol as related to the saturation of crop rotations with rape. Eurasian Soil Science 39(9), 1002–1010. doi:10.1134/S1064229306090109.
  • Macia, P., Fernandez-Costas, C. Rodrigues, E., et al., 2014, Technosols as novel valorization strategy for an ecological management of dredged marine sediments. Ecological Engineering 67, 182–189. doi:10.1016/jecoleng.2014.03.020.
  • Kharytonov, M., Pidlisnyuk, V. Stefanovska, T., et al., 2019, The estimation of miscanthus × giganteus adaptive potential for cultivation on the mining and post-mining lands in Ukraine. Environmental Science Pollution Research International 26(3), 2974–2986. doi: 10.1007/s11356-018-3741-0.
  • Betancur-Corredor, B., Loaiza-Usuga, J.C. Denich, M., et al., 2020, Changes of technosol properties and vegetation structure along a chronosequence of dredged sediment deposition in areas with alluvial gold mining in Colombia. Journal of Soils & Sediments 20, 2377–2394. doi:10.1007/s11368-019-02551-9.
  • Tarika, O. and Zabaluev, V., 2000, Mine land reclamation strategies in the Nikopol manganese ore basin (Central steppe of Ukraine): Using replaced mining overburden in agriculture. In: Proceedings of the 16th annual conference of the society for ecological restoration, Victoria, BC, Canada.
  • Séré, G., Schwartz, C. Ouvrard, S., et al., 2008, Soil construction: A step for ecological reclamation of derelict lands. Journal of Soils Sediments 8, 130–136. doi:10.1065/jss2008.03.277.
  • Aggelides, S.M. and Londra, P.A., 2000, Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresource Technology 71(3), 253–259. doi:10.1016/S0960-8524(99)00074-7.
  • Liu, J., Schulz, H. Brandl, S., et al., 2012, Short‐term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. Journal of Plant Nutrition and Soil Science 175, 698–707. https://api.semanticscholar.org/CorpusID:95450741
  • Bielski, S., 2015, The agricultural production of biomass for energy purposes in Poland. Agriculture and Forestry 61(1), 153–160. doi:10.17707/agricultforest.61.1.20.
  • Blanco-Canqui, H., 2016, Growing dedicated energy crops on marginal lands and ecosystem services. Soil Science Society of America Journal 80(4), 845–858. doi:10.2136/sssaj2016.03.0080.
  • Kharytonov, M., Babenko, M. Martynova, et al., 2023, Elemental composition of miscanthus biomass grown on different kinds of Technosols. The International Journal of Environmental Studies 80(2), 488–496. doi:10.1080/00207233.2022.2152624.
  • Tsapko, Y., Starshenko, O. and Vodiak, Y., 2023, Using the ecosystem services potential of chernozem to restore war-damaged land. International Journal of Environmental Studies 80(2), 399–409. doi:10.1080/00207233.2023.2179760.
  • Lopushnyak, V., Hrytsulyak, H. Lopushniak, H., et al., 2023, Integrated assessment of pollution of sod-podzolic soils by application of sewage sludge under Miscanthus x giganteus. The International Journal of Environmental Studies 80(2), 476–487. doi:10.1080/00207233.2022.2147725.
  • Heaton, E.A., Dohleman, F.G. and Long, S.P., 2008, Meeting US biofuel goals with less land: The potential of miscanthus. Global Change Biology 14, 2000–2014. doi:10.1111/j.1365-2486.2008.01662.x.
  • Wanat, N., Austruy, A. Joussen, E., et al., 2013, Potential of miscanthus x giganteus grown on highly contaminated Technosols. Journal of Geochemical Exploration 126–127, 78–84. doi:10.1016/j.gexplo.2013.01.001.
  • Haines, S.A., Gehl, R.J., Havlin, J.L. and Ranney, T.G., 2015, Nitrogen and phosphorus fertilizer effects on establishment of giant miscanthus. BioEnergy Research 8(1), 17–27. doi:10.1007/s12155-014-9499-4.
  • Winkler, B., Mangold, A. von Cossel, M., et al., 2020, Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand. Renewable and Sustainable Energy Reviews 132, 110053. doi:10.1016/j.rser.2020.110053.
  • Werle, S., Bisorca, D. Katelbach-Wozniak, A., et al., 2016, Phytoremediation as an effective method to remove heavy metals from contaminated area - TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops. Journal of the Energy Institute 90, 408–417. doi:10.1016/j.joei.2016.04.002.
  • Kocoń, A. and Jurga, B., 2017, The evaluation of growth and phytoextraction potential of miscanthus x giganteus and sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environmental Science and Pollution Research 24(5), 4990–5000. doi:10.1007/s11356-016-8241-5.
  • Baker, A.J.M., Reeves, R.D. and Hajar, A.S.M., 1994, Heavy metal accumulation and tTolerance in British populations of the metallophyte. The New Phytologist 127(1), 61–68. doi:10.1111/j.1469-8137.1994.tb04259.x.
  • Barbosa, B., Boléo, S. Sidella, S., et al., 2015, Phytoremediation of heavy metal-contaminated soils using the perennial energy crops miscanthus spp. And Arundo donax L. BioEnergy Research 8, 1500–1511. doi:10.1007/s12155-015-9688-9.
  • Pidlisnyuk, V., Aigerim Mamirova, A., Kumar Pranaw, K., Stadnik, V., Kuráň, P., Trögl, J. Shapoval, P., et al., 2022, Miscanthus × giganteus phytoremediation of soil contaminated with trace elements as influenced by the presence of plant growth-promoting bacteria. Agronomy 12(4), 771. doi:10.3390/agronomy12040771.
  • von Cossel, M., Mangold, A. Iqbal, Y., et al., 2019, How to generate yield in the first year – a three-year experiment on miscanthus (miscanthus × giganteus Greef et Deuter). Establishment under maize (Zea mays L.). Agronomy 9, 237. doi:10.3390/agronomy9050237.
  • Kołodziej, B., Antonkiewicz, J. and Sugier, D., 2016, Miscanthus giganteus as a biomass feedstock grown on municipal sewage sludge. Industrial Crops and Products 81, 72–82. doi:10.1016/j.indcrop.2015.11.052.
  • Antonkiewicz, J., Kołodziej, B. and Bielińska, E.J., 2016, The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environmental Science and Pollution Research 23(10), 9505–9517. doi:10.1007/s11356-016-6175-6.
  • Antonkiewicz, J., Kołodziej, B., Bielinska, E.J. and Popławska, A., 2019, The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Science Annual 70(1), 21–33. doi:10.2478/ssa-2019-0003.
  • Ociepa-Kubicka, A. and Pachura, P., 2013, The use of sewage sludge and compost for fertilization of energy crops on the example of miscanthus and Virginia mallow. Rocznik Ochrona Środowiska 15, 2267–2278.
  • Dubis, B., Szatkowski, A. and Jankowski, K.J., 2022, Sewage sludge, digestate, and mineral fertilizer application affects the yield and energy balance of Amur silvergrass. Industrial Crops and Products 175, 114235. doi:10.1016/j.indcrop.2021.114235.
  • Dubis, B., Jankowski, K., Załuski, D. and Sokolski, M., 2020, The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process. Energy 206, 118189. doi:10.1016/j.energy.2020.118189.
  • Matusiak, M., Ślęzak, R. and Ledakowicz, S., 2020, Thermogravimetric kinetics of selected energy crops pyrolysis. Energies 13(15), 3977. doi:10.3390/en13153977.
  • Mészáros, E., Jakab, E., Várhegyi, G. and Tovar, P., 2007, Thermogravimetry/mass spectrometry analysis of energy crops. Journal of Thermal Analysis and Calorimetry 88, 477–482. doi:10.1007/s10973-006-8102-4.
  • Arundale, R.A., Bauer, S. Haffner, F.B., et al., 2015, Environment has little effect on biomass biochemical composition of miscanthus × giganteus across soil types, nitrogen fertilisation, and times of harvest. BioEnergy Research 8, 1636–1646. doi:10.1007/s12155-015-9613-2.
  • Peni, D., Stolarski, M.J. and Dębowski, M., 2022, Green biomass quality of perennial herbaceous crops depending on the species, type and level of fertilization. Industrial Crops and Products 184, 115026. doi:10.1016/j.indcrop.2022.115026.
  • Ozdemir, S., Dede, O.H., Inan, M. and Turp, S.M., 2018, Effects of sewage sludge on energy content and combustion emissions of energy crops. International Journal of Agriculture and Biology 20, 1575–1580. doi:10.17957/IJAB/15.0671.
  • Havryushenko, O., Mytsyk, O. Kharytonov, M., et al., 2022, The suitability of physical and chemical properties of rocks for land reclamation in different subzones of the Ukrainian steppe. Journal of Geology, Geography and Geoecology 31(2), 251–259. doi:10.15421/112223.
  • Kharytonov, M., Martynova, N. Babenko, et al., 2023, Production of sweet sorghum bio-feedstock on technosol using municipal sewage sludge treated with flocculant in Ukraine. Agriculture 13, 1129. doi:10.3390/agriculture13061129.
  • Nelson, D.W. and Sommers, L.E., 1996, Total carbon, organic carbon and organic matter. In: J.M. Bigham (Ed.) Methods of soil analysis, part 3 chemical methods. SSSA book series 5. (Madison, WI: Soil Science Society of America and American Society of Agronomy), pp. 1001–1006.
  • Cornfield, A.H., 1960, Ammonia released on treating soils with N sodium hydroxide as a possible method for predicting the nitrogen supplying power of soils. Nature (London) 187, 260–261. doi:10.1038/187260a0.
  • Olsen, S.R., Cole, C.V. Watanabe, F.S., et al., 1954, Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular 939 (Washington, DC: USDA).
  • Biswanath, D., Rogers, C.W. Leytem, A.B., et al., 2019, Evaluation of soil test phosphorus extractants in Idaho soils. Soil Science Society of America Journal 83(3), 817–824. doi:10.2136/sssaj2018.08.0314.
  • Khan, M.I., Afzal, M.J. Bashir, S., et al., 2021, Improving nutrient uptake, growth, yield and protein content in chickpea by the co-addition of phosphorus fertilizers, organic manures, and bacillus sp. MN-54. Agronomy 11, 436. doi:10.3390/agronomy11030436.
  • Kabata-Pendias, A., 2004, Soil-plant transfer of trace elements - An environmental issue. Geoderma 122(2–4), 143–149. doi:10.1016/j.geoderma.2004.01.004.
  • Haigh, M. and Dyckhoff, C., 1996, Soils. In: S. Watts and L. Halliwell (Eds) Essential environmental science, methods & techniques (London: Routledge), pp. 261–303.
  • Thomas, R.L., Sheard, R.W. and Mayer, J.R., 1967, Comparison of conventional and automated procedures for nitrogen, phosphorus and potassium analysis of plant material using a single digestion. Agronomy Journal 59, 240–243. doi:10.2134/agronj1967.00021962005900030010x.
  • Przygocka-Cyna, K. and Grzebisz, W., 2018, Effect of biofertilizers on nutrient uptake by vegetables grown in a short cropping sequence. Journal of Elementology 23(3), 807–823. doi:10.5601/jelem.2017.22.4.1479.
  • Paulik, F., Paulik, J. and Erdey, L., 1966, Derivatography. A complex method of thermal analysis. Talanta 13(10), 1405. doi:10.1016/0039-9140(66)80083-8.
  • Svirenko, L. and Bondar, V., 2010, Sludge treatment for application in agriculture should be the option number one for Ukraine. Linnaeus ECO-TECH 10, 356–362. doi:10.15626/Eco-Tech.2010.037.
  • Vankovyсh, D., Bota, O. Malovanyy, M., et al., 2021, Assessment of the prospects of application of sewage sludge from Lviv wastewater treatment plants for the purpose of conducting the biological reclamation. Journal of Ecological Engineering 22(2), 134–143. doi: 10.12911/22998993/130892.
  • Lee, C.S., Robinson, J. and Chong, M.F., 2014, A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection 92(6), 489–508. doi:10.1016/j.psep.2014.04.010.
  • Renault, F., Sancey, B. Charles, J., et al., 2009, Chitosan flocculation of cardboard-mill secondary biological wastewater. Chemical Engineering Journal 155(3), 775–783. doi:10.1016/j.cej.2009.09.023.
  • Yin, X., Li, Z., Chai, F., Tian, Y., Tan, Y. and Wang, M., et al., 2021, Synthesis of a micro-crosslinked polyacrylamide flocculant and its application in treatment of oily produced water. Energy & Fuels 35(22), 18396–18405. doi:10.1021/acs.energyfuels.1c02213.
  • Borkowska, H. and Molas, R., 2013, Yield comparison of four lignocellulosic perennial energy crop species. Biomass and Bioenergy 51, 145–153. doi:10.1016/j.biombioe.2013.01.017.
  • Li, C., Xiao, B. Wang, Q.H., et al., 2014, Phytoremediation of Zn and Cr-contaminated soil using two promising energy grasses. Water, Air, and Soil Pollution 225, 2027. doi:10.1007/s11270-014-2027-5.
  • Pavel, P.B., Puschenreiter, M. Wenzel, W.W., et al., 2014, Aided phytostabilization using miscanthus sinensis × giganteus on heavy metal-contaminated soils. Science of the Total Environment 479–480, 125–131. doi:10.1016/j.scitotenv.2014.01.097.
  • Nsanganwimana, F., Al Souki, K.S. Waterlot, C., et al., 2021, Potentials of miscanthus x giganteus for phytostabilization of trace element-contaminated soils: Ex situ experiment. Ecotoxicology & Environmental Safety 214, 112125. doi:10.1016/j.ecoenv.2021.112125.
  • Pidlisnyuk, V., Stefanovska, T. Lewis, E.E., et al., 2014, Miscanthus as a productive biofuel crop for phytoremediation. Critical Reviews in Plant Science 33(1), 1–19. doi:10.1080/07352689.2014.847616.
  • Kharytonov, M., Klimkina, I., Martynova, N., et al., 2019, The biochar impact on miscanthus and sunflower growth in marginal lands. Agrology 3(1), 3–11. doi:10.32819/020001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.