89
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation of 137Cs contaminated sod-podzolic soil in Northern Polissia white sweet clover (Melilotus albus)

, , , , &

References

  • Cheremisina, O., Sergeev, V., Fedorov, A. and Iliyna, A., et al., 2017, Problems of protection of urban areas from radionuclides strontium-90 and caesium-137 after technological disasters. Journal of Ecological Engineering 18(3), 97–103. doi:10.12911/22998993/70201.
  • Razanov, S., Landin, V. and Nedashkivskyi, V., et al., 2022, Intensity of 137Cs transition into nectar-pollinating plants and beekeeping products during reclamation of radioactively contaminated soils. International Journal of Ecosystems and Ecology Science 12(1), 291–298. doi:10.31407/ijees12.134.
  • Polevoy, A., Lyashenko, G., Zhygailo, O., Volvach, O., Zhygailo, T., Popovych, I., Tolmachova, A., Kolosovska, V., Kostyukevych, T. and Barsukova, O., et al., 2023, Modeling radiocesium contamination of sunflower products in the Zaporizhzhia region. Journal of Ecological Engineering 24(4), 279–287. doi:10.12911/22998993/160417.
  • Steinhauser, G. and Saey, P.R., 2016, 137Cs in the meat of wild boars: A comparison of the impacts of Chernobyl and Fukushima. Journal of Radioanalytical and Nuclear Chemistry 307, 1801–1806. doi:10.1007/s10967-015-4417-6.
  • Sakashita, W., Miura, S., Akama, A., Ohashi, S., Ikeda, S., Saitoh, T., Komatsu, M., Shinomiya, Y. and Kaneko, S., et al., 2020, Assessment of vertical radiocesium transfer in soil via roots. Journal of Environmental Radioactivity 222, 106369. doi:10.1016/j.jenvrad.2020.106369.
  • Liubarets, T.F., Shibata, Y., Saenko, V.A., Bebeshko, V.G., Prysyazhnyuk, A.E., Bruslova, K.M., Fuzik, M.M., Yamashita, S. and Bazyka, D.A., et al., 2019, Childhood leukemia in Ukraine after the Chornobyl accident. Radiation and Environmental Biophysics 58(4), 553–562. doi:10.1007/s00411-019-00810-4.
  • Prysyazhnyuk, A.Y., Fuzik, M.M., Gudzenko, N.A., Bazyka, D., Fedorenko, Z., Ryzhov, A., Soumkina, O., Trotsyuk, N., Khukhrianska, O. and Danevych, S., et al., 2020, Incidence of malignant neoplasms among residents of small radionuclide-contaminated Chornobyl districts in a post-accident period. Problems of Radiation Medicine and Radiobiology 25, 265–284. doi:10.33145/2304-8336-2020-25-265-284.
  • Tapio, S., Little, M.P. and Kaiser, J.C., et al., 2021, Ionizing radiation-induced circulatory and metabolic diseases. Environmental International 146, 106235. doi:10.1016/j.envint.2020.106235.
  • Clemens, S., 2006, Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11), 1707–1719. doi:10.1016/j.biochi.2006.07.003.
  • Razanov, S.F., Tkachuk, O.P. and Razanova, A.M., et al., 2020, Intensity of heavy metal accumulation in plants of Silybum marianum L. in conditions of field rotation. Ukrainian Journal of Ecology 10(2), 131–136. doi:10.15421/2020_40.
  • Thakur, S., Singh, L. and Wahid, Z.A., et. al., 2016, Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment 188, 206. doi:10.1007/s10661-016-5211-9.
  • Kafle, A., Timilsina, A., Gautam, A., et al., 2022, Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances 8, 100203. doi:10.1016/j.envadv.2022.100203.
  • Jach, M.E., Sajnaga, E. and Ziaja, M., 2022, Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils. Biology (Basel) 11(5), 676. doi:10.3390/biology11050676.
  • Dhanwal, P., Kumar, A. and Dudeja, S., et al., 2017, Recent advances in phytoremediation technology. Advances in Environmental Biotechnology 227, 241. doi:10.1007/978-981-10-4041-2_14.
  • Suman, J., Uhlik, O. and Viktorova, J., et. al., 2018, Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front Plant Science 9, 1476. doi:10.3389/fpls.2018.01476.
  • Lavrinenko, Y., Vlaschuk, A. and Drobit, A., et al., 2019, Seed productivity of white one-year white clover varieties in the south of Ukraine. Scientific Reports of National University of Life and Environmental Sciences of Ukraine 2(78). doi:10.31548/dopovidi2019.02.007.
  • Razanov, S., Kutsenko, M. and Klymenko, M., et. al., 2023, Assessment of phytoremediation of 137Cs contaminated soils during the cultivation of nectar-pollinating plants. Journal of Ecological Engineering 24(5), 316–321. doi:10.12911/22998993/161767.
  • Talgre, L., Lauringson, E. and Makke, A., 2010, Amounts of nitrogen and carbon returned to soil depending on green manure and the effect on winter wheat yield. Agronomy Research 8(Special Issue II), 487–492.
  • Sowa-Borowiec, P., Jarecki, W. and Dzugan, M., 2022, The effect of sowing density and different harvesting stages on yield and some forage quality characters of the white sweet clover (Melilotus albus). Agriculture 12, 575. doi:10.3390/agriculture12050575.
  • IUSS Working Group, 2022, World Reference Base for Soil Resources 4th edition (Vienna: International Union of Soil Sciences).
  • Nelson, D.W. and Sommers, L.E., 1996, Total carbon, organic carbon and organic matter. In: J.M. Bigham, et al., (Eds) Methods of Soil Analysis, Part 3 Chemical Methods. SSSA Book Series 5 (Madison: Soil Science Society of America and American Society of Agronomy), pp. 1001–1006.
  • Haigh, M. and Dyckhoff, C., 1996, Soils. In: S. Watts and L. Halliwell (Eds) Essential Environmental Science, Methods & Techniques (London: Routledge), pp. 261–303.
  • Cornfield, A.H., 1960, Ammonia released on treating soils with N sodium hydroxide as a possible method for predicting the nitrogen supplying power of soils. Nature (London) 187, 260–261. doi:10.1038/187260a0.
  • Bray, R.H. and Kurtz, L.T., 1945, Determination of total, organic, and available phosphorus in soil. Soil Science 59, 39–46. doi:10.1097/00010694-194501000-00006.
  • Baker, A.J.M., Reeves, R.D. and Hajar, A.S.M., 1994, Heavy metal accumulation and tolerance in British populations of the metallophyte. The New Phytologist 127(1), 61–68. doi:10.1111/j.1469-8137.1994.tb04259.x.
  • IAEA, 1989, Measurement of radionuclides in food and the environment, a guidebook. Technical reports series 295 (Vienna: International Atomic Energy Agency).
  • Gerhardt, K.E., Gerwing, P.D. and Greenberg, B.M., 2017, Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science 256, 170–185. doi:10.1016/j.plantsci.2016.11.016.
  • Brown, S.L., Chaney, R., Angle, J. and Baker, A.J.M., et al., 1994, Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc- and cadmium-contaminated soil. Journal of Environmental Quality 23(6), 1151–1157. doi:10.2134/jeq1994.00472425002300060004x.
  • Hamzah, A., Hapsari, R.I. and Wisnubroto, E.I., 2016, Phytoremediation of cadmium-contaminated agricultural land using indigenous plants. International Journal of Agriculture and Environmental Research 2, 8–14.
  • Rehman, M.Z.U., Rizwan, M. and Ali, S., et al., 2017, Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotoxicology and Environmental Safety 143, 236–248. doi:10.1016/j.ecoenv.2017.05.038.
  • Kocira, A., Staniak, M. and Tomaszewska, M., et. al., 2020, Legume cover crops as one of the elements of strategic weed management and soil quality improvement. Agriculture 10, 394. doi:10.3390/agriculture10090394.
  • Ali, H., Khan, E. and Sajad, M.A., 2013, Phytoremediation of heavy metals – concepts and applications. Chemosphere 91, 869–881. doi:10.1016/j.chemosphere.2013.01.075.
  • Tlustoš, P., Száková, J., Hruby, J., Hartman, I., Najmanová, J., Nedělník, J., Pavlíková, D. and Batysta, M., et al., 2006, Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Soil and Environment 52(9), 413–423. doi:10.17221/3460-pse.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.