41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photosynthetic activity of sweet sorghum fertilised by sewage sludge

ORCID Icon, , , , & ORCID Icon

References

  • Gomaa, M.A., Rehab, I.F., Kordy, A.M., et al., 2020, Assessment of sorghum (Sorghum bicolor L.) productivity under different weed control methods, mineral and nano fertilization. Egyptian Academic Journal I of Biological Science 11(1), 1–11. doi:10.21608/eajbsh.2020.73400.
  • Li, Y., Li, Z., Cui, S., et al., 2019, A global synthesis of the effect of water and nitrogen input on maize (Zea mays) yield, water productivity and nitrogen use efficiency. Agricultural and Forest Meteorology 268, 136–145. doi:10.1016/j.agrformet.2019.01.018.
  • Salwa, H.A.A. and Abotaleb, H.H., 2020, Potential for improving sorghum productivity and quality by organic–bio and mineral fertilizers under soil lands conditions. Journal of Current Trends in Agriculture, Environment and Sustainability 1(1), 103. doi:10.21608/ejas.2021.183466.
  • Asadi, M. and Eshghizadeh, H.R., 2021, Response of sorghum genotypes to water deficit stress under different CO2 and nitrogen levels. Plant Physiology and Biochemistry 158, 255–264. doi:10.1016/j.plaphy.2020.11.010.
  • Chadalavada, K., Kumari, B.D.R. and Kumar, T.S., 2021, Sorghum mitigates climate variability and change on crop yield and quality. Planta 253(5), 113. doi:10.1007/s00425-021-03631-2.
  • Martínez-Goñi, X.S., Robredo, A. and Pérez-López, U., 2022, Sorghum bicolor prioritizes the recovery of its photosynthetic activity when re-watered after severe drought stress, while manages to preserve it under elevated CO2 and drought. Journal of Agronomy and Crop Science 209(2), 207–217. doi:10.1111/jac.12618.
  • Rizvi, A., Ahmed, B. and Khan, M.S., 2021, Sorghum-phosphate solubilizers interactions: Crop nutrition, biotic stress alleviation, and yield optimization. Frontiers in Plant Science 12, 746780. doi:10.3389/fpls.2021.746780.
  • Kołodziej, B., Antonkiewicz, J., Stachyra, M., et al., 2015, Use of sewage sludge in bioenergy production—A case study on the effects on sorghum biomass production. The European Journal of Agronomy 69, 63–74. doi:10.1016/j.eja.2015.06.004.
  • Głąb, L., Sowiński, J., Chmielewska, J., et al., 2019, Comparison of the energy efficiency of methane and ethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) with a variety of feedstock management technologies. Biomass and Bioenergy 129, 105332. doi:10.1016/j.biombioe.2019.105332.
  • Zuo, W., Gu, C., Zhang, W., et al., 2019, Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land. Science of the Total Environment 654, 541–549. doi:10.1016/j.scitotenv.2018.11.127.
  • Pravdyva, L., Zatserkovna, N., Vakhniy, S., et al., 2023, Photosynthetic productivity of sorghum (Sorghum bicolor L. (Moenh) in the conditions of the Right-Bank Forest-Steppe of Ukraine. Scientific Horizons 26(5), 56–64. doi:10.48077/scihor5.2023.56.
  • Oliveira, D.P., de Camargo, R., Lemes, E., et al., 2017, Organic matter sources in the composition of pelletized organomineral fertilizers used in sorghum crops. African Journal of Agricultural Research 12(32), 2574–2581. doi:10.5897/AJAR2016.11476.
  • George-Jaeggli, B., Mortlock, M.Y. and Borrell, A.K., 2017, Bigger is not always better: Reducing leaf area helps stay-green sorghum use soil water more slowly. Environmental and Experimental Botany 138, 119–129. doi:10.1016/j.envexpbot.2017.03.002.
  • Nazli, R.I., Tansi, V., Gulnaz, O., et al., 2020, Interactive effects of nitrogen and humic substances applications on bioethanol production from sweet sorghum and combustion characteristics of its bagasse. Agronomy 10(9), 1397. https://doi.org/10.3390/agronomy10091397.
  • Morales, F., Ancín, M., Fakhet, D., et al., 2020, Photosynthetic metabolism under stressful growth conditions as a basis for crop breeding and yield improvement. Plants 9(1), 88. doi:10.3390/plants9010088.
  • Kalaji, H.M., Jajoo, A. and Oukarroum, A., 2016, Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum 38(4), 102. doi:10.1007/s11738-016-2113-y.
  • Kargar, M., Ghorbani, R., Rashed Mohassel, M.H., et al., 2019, Chlorophyl fluorescence – A tool for quick identification of accase and ALS inhibitor herbicides performance. Planta Daninha 37, e019166813. doi:10.1590/S0100-83582019370100132.
  • Pérez-Bueno, M.L., Pineda, M. and Barón, M., 2019, Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science 10, 1135. doi:10.3389/fpls.2019.01135.
  • Zhang, F., Zhu, K., Wang, Y.Q., et al., 2019, Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica 57(4), 1156–1164. doi:10.32615/ps.2019.136.
  • Lovynska, V., Holoborodko, K. and Ivanko, I., et el., 2023, Heavy metal accumulation by Acer platanoides and Robinia pseudoacacia in an industrial city (Northern Steppe of Ukraine). Biosystems Diversity 31(2), 246–253. doi:10.15421/012327.
  • Gu, М., Yin, G., Gan, T., et al., 2022, Construction of characterization parameters of algal photosynthetic inhibition method for detection of comprehensive toxicity in water. Ecological Indicators 136, 108651. doi:10.1016/j.ecolind.2022.108651.
  • Romanowska-Duda, Z., Grzesik, M. and Janas, R., 2019, Maximal efficiency of PSII as a marker of sorghum development fertilized with waste from biomass biodigestion to methane. Frontiers of Plant Science 9, 1920. doi:10.3389/fpls.2018.01920.
  • Zhang, H., Zhao, Q. Wang, Z., et al., 2021, Effects of nitrogen fertilizer on photosynthetic characteristics, biomass, and yield of wheat under different shading conditions. Agronomy 11(10), 1989. 1989. https://doi.org/10.3390/agronomy11101989.
  • El-Mejjaouy, Y., Lahrir, M., Naciri, R., et al., 2022, How far can chlorophyll a fluorescence detect phosphorus status in wheat leaves (Triticum durum L.). Environmental and Experimental Botany 194, 104762. doi:10.1016/j.envexpbot.2021.104762.
  • Gao, D., Ran, C.H., Zhang, Y., et al., 2022, Effect of different concentrations of foliar iron fertilizer on chlorophyll fluorescence characteristics of iron-deficient rice seedlings under saline sodic conditions. Plant Physiology and Biochemistry 185, 112–122. doi:10.1016/j.plaphy.2022.05.021.
  • Kautsky, H. and Hirsch, A., 1931, New research on photosynthesis Kohlensäureassimilation. Naturwissenschaften 19(48), 964. ( German). doi:10.1007/BF01516164.
  • Kalaji, H.M., Schansker, G., Brestic, M., et al., 2017, Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research 132(1), 13–66. doi:10.1007/s11120-016-0318-y.
  • Romanov, V.A., Galelyuka, I.B. and Sarakhan, E.V., 2010, Portable fluoremeter floratest and its application features. Sensor Electronics and Microsystem Technologies 7(3), 39–44. doi:10.18524/1815-7459.2010.3.114470.
  • Holoborodko, K.K., Sytnyk, S.A., Lovynska, V.M., et al., 2022, Impact of invasive species Parectopa robiniella (Gracillariidae) on fluorescence parameters of Robinia pseudoacacia in the conditions of the steppe zone of Ukraine. Regulatory Mechanisms in Biosystems 13(3), 324–330. doi:10.15421/022242.
  • Ferroni, L., Živčak, М., Kovar, М., et al., 2022, Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of photosystem I helps compensate for a deregulated photosynthetic electron flow. Journal of Photochemistry and Photobiology B: Biology 234, 112549. doi:10.1016/j.jphotobiol.2022.112549.
  • Ritchie, G., 2006, Chlorophyll fluorescence: What is it and what do the numbers mean? In L.E. Riley, et al. National Proceedings: Forest and Conservation Nursery Associations - 2005. Proceedings RMRS-P-43. (Fort Collins CO: USDA Forest Service), pp. 34–42.
  • Kalaji, H.M., Rastogi, A., Živčák, M., et al., 2018, Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56(3), 953–961. doi:10.1007/s11099-018-0766-z.
  • Baghbani-Arania, А., Modarres-Sanavya, S.A.М., Mashhadi-Akbar-Boojarb, М., et al., 2017, Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Industrial Crops and Products 109, 346–357. doi:10.1016/j.indcrop.2017.08.049.
  • Chen, J., Burke, J.J. and Xin, Z., 2018, Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. BMC Plant Biology 18(11). doi: 10.1186/s12870-018-1228-2.
  • Spulak, O., Martincova, J. and Vitamvas, J., et al., 2014, The effect of fertilization on chlorophyll activity, content of photosynthetically active pigments and nutrients in Carpathian birch leaves. Austrian Journal of Forest Science 131(1), 23–44.
  • Wu, Y., Li, Q., Jin, R., et al., 2019, Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low nitrogen tolerances. Journal of Integrative Agriculture 18(6), 1246–1256. doi:10.1016/S2095-3119(18)62030-1.
  • Yanjun, Y.Z., Jinhua, C. and Linjing, J., et al., 2018, Effects of fertilizer levels and plant density on chlorophyll contents, its fluorescence and grain yield of Setaria italica. International Journal of Agriculture and Biology 20, 737–744. doi:10.17957/IJAB/15.0548.
  • Matlok, N., Szostek, M., Antos, P., et al., 2020, Effect of foliar and soil fertilization with new products based on calcinated bones on selected physiological parameters of maize plants. Applied Sciences 10(7), 2579. doi:10.3390/app10072579.
  • Zhang, R., Zhang, W., Kang, Y., et al., 2022, Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chemical and Biological Technologies in Agriculture 9(1), 79. doi:10.1186/s40538-022-00346-8.
  • Lichtenthaler, H., Buschmann, C. and Knapp, M., 2005, How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43(3), 379–393. doi:10.1007/s11099-005-0062-6.
  • Eisvand, H.R., Kamaei, H. and Nazarian, F., 2018, Chlorophyll fluorescence, yield and yield components of bread wheat affected by phosphate bio-fertilizer, zinc and boron under late-season heat stress. Photosynthetica 56(4), 1287–1296. doi:10.1007/s11099-018-0829-1.
  • Hatam, Z., Sabet, M.S., Malakouti, M.J., et al., 2020, Zinc and potassium fertilizer recommendation for cotton seedlings under salinity stress based on gas exchange and chlorophyll fluorescence responses. South African Journal of Botany 130, 155–164. doi:10.1016/j.sajb.2019.11.032.
  • Ferroni, L., Colpo, А. and Baldisserotto, С., 2021, In an ancient vascular plant the intermediate relaxing component of NPQ depends on a reduced stroma: Evidence from dithiothreitol treatment. Journal of Photochemistry and Photobiology B: Biology 215, 112114. doi:10.1016/j.jphotobiol.2020.112114.
  • Gatsuk, L.E., Smirnova, O.V., Vorontzova, L.I., et al., 1980, Age states of plants of various growth forms: A review. The Journal of Ecology 68(2), 675–696. doi:10.2307/2259429.
  • Carstensen, A., Herdean, A., Schmidt, S.B., et al., 2018, The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology 177(1), 271–284. doi:10.1104/pp.17.01624.
  • Hussain, N., Sohail, Y., Shakeel, N., et al., 2022, Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes. Scientific Reports 12(1), 12677. doi:10.1038/s41598-022-16922-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.