383
Views
9
CrossRef citations to date
0
Altmetric
Articles

Identifying and exploring relationships between contextual situations and ordinary differential equations

&
Pages 1077-1095 | Received 16 Oct 2013, Published online: 02 Apr 2015

References

  • Haberman R. Mathematical models: mechanical vibrations, population dynamics, and traffic flow (Classics in Applied Mathematics). Philadelphia: Society for Industrial and Applied Mathematics; 1998.
  • Arslan S, Laborde C. Un outil favorisant l'interaction entre cadres: Cabri. Une étude de cas dans l'apprentissage des Equations Différentielles [A tool that promotes the interaction between frames: Cabri, a case study in the learning of differential equations]. Reims France: Actes du Congrès Européen ITEM; 2003.
  • Blanchard P, Devaney R, Hall G. Differential equations (PCtools). Boston: International Thompson; 2006.
  • Hubbard J, West B. Differential equations, a dynamical system approach, Part I: ordinary differential equations. New York: Springer-Verlag; 1990.
  • Guerrero-Ortiz C. Interpretación de las soluciones de las ecuaciones diferenciales ordinarias. Estrategias y dificultades [Interpretation of the solutions of ordinary differential equations. Strategies and difficulties, Master dissertation]. México: Cinvestav; 2008.
  • Guerrero-Ortiz C, Camacho-Machín M, Mejía H. Dificultades de los estudiantes en la interpretación de las soluciones de Ecuaciones Diferenciales Ordinarias que modelan un problema [Difficulties experienced by students in the interpretation of the solutions of ordinary differential equations that models a problem]. Enseñanza de las Ciencias. 2010;28(3):341–352.
  • Rowland D, Jovanoski Z. Student interpretations of the terms in first-order ordinary differential equations in modelling contexts. Int J Math Educ Sci Technol. 2004;35(4):503–516.
  • Rowland D. Student difficulties with units in differential equations in modelling contexts. Int J Math Educ Sci Technol.2006;37(5):553–558.
  • Rasmussen CL. New directions in differential equations: a framework for interpreting students' understandings and difficulties. J Math Behav. 2001;20(1):55–87.
  • Camacho-Machín M, Perdomo-Díaz J, Santos-Trigo M. Procesos conceptuales y cognitivos en la introducción de Ecuaciones Diferenciales Ordinarias vía la Resolución de Problemas [Conceptual and cognitive processes in the introduction of Ordinary Differential Equations through Problem Solving]. Enseñanza de las Ciencias. 2012;230(2):9–32.
  • Camacho-Machín M, Perdomo-Díaz J, Santos-Trigo M. An exploration of students conceptual knowledge built in a first Ordinary Differential Equations Course (Part II). Teaching Math. 2012;15(2):63–84.
  • Rasmussen CL, Kwon O. An inquiry-oriented approach to undergraduate mathematics. J Math Behav. 2006;26(3):189–194.
  • Kwon ON. Conceptualizing the realistic mathematics education approach in the teaching and learning of ordinary differential equations, In: Hallett D, Tazanakis C, editors. Proceedings of the International Conference on the Teaching of Mathematics (at the Undergraduate Level ); 2002 Jul; Crete, Greece: Hersonissos; 2002.
  • Raychaudhuri D. A layer framework to investigate student understanding and application of the existence and uniqueness theorems of differential equations. Int J Math Educ Sci Technol. 2007;38(3):367–381.
  • Raychaudhuri D. Dynamics of a definition: a framework to analyse student construction of the concept of solution to a differential equation. Int J Math Educ Sci Technol. 2008;39(2):161–177.
  • Arslan S. Do students really understand what an ordinary differential equation is? Int J Math Educ Sci Technol. 2010;41(7):873–888.
  • Habre S. Exploring students’ strategies to solve ordinary differential equations in a reformed setting. J Math Behav. 2000;18(4):455–472.
  • Zandieh M, McDonald M. Student understanding of equilibrium solution in differential equations. In: Hitt F, Santos M, editors. Proceedings of the 21st annual meeting of the North American chapter of the international group for the psychology of mathematics education. Columbus, OH: ERIC, 1999. p. 253–258.
  • Doerr H, Lesh R. A modeling perspective on teacher development. In: Lesh R, Doerr H, editors. Beyond constructivism: a models and modeling perspective on mathematics problem solving, learning and teaching. Mahwah, NJ: Lawrence Erlbaum; 2003. p. 125–140.
  • Doerr H, Tripp J. Understanding how students develop mathematical models. Math Thinking Learn. 1999;1(3):231–254.
  • Duval R. Argumentar, demostrar, explicar: ¿continuidad o ruptura cognitiva? [Argue, demonstrate, explain: Continuity or cognitive breakup?]. México: Grupo Editorial Iberoamérica; 1999.
  • Duval R. Registres de représentation sémiotique et fonctionnement cognitif de la pensée [Register of semiotic representation and cognitive functioning of thought]. Annales de Didactique et de Science Cognitives. 1993;5:37–65.
  • Duval R. Sémiosis et pensée humaine: registres sémiotiques et apprentissage intellectuels [Semiosis and human thought. Semiotic registers and intellectual learnings]. Berne, Switzerland: Peter Lang; 1995.
  • Drijvers P, Kieran C, Mariotti M-A, Ainley J, Andresen M, Chan Y, Dana-Picard T, Gueudet G, Kidron I, Leung A, Meagher M. Integrating technology into mathematics education: theoretical perspectives. In: Hoyles C, Lagrange J-B, editors. Mathematics education and technology-rethinking the terrain. The 17th ICMI Study. New York, NY: Springer; 2010. p. 89–132.
  • Gollwitzer H. Visualization in differential equations. In: Zimmermann W, Cunnigham S, editors. Visualization in teaching and learning mathematics. Washington, DC: Mathematical Association of America; 1991. p. 149–156.
  • Andresen M. Changes to a modelling approach with the use of computer. Int Electr J Math Educ. 2007;2(1):1–15.
  • Moreno-Armella L, Santos-Trigo M. The use of digital technology in mathematical practices: reconciling traditional and emerging approaches. In: English L, Kirshner D, editors. Handbook of international research in mathematical education (3rd ed). Preprint.
  • Eisenberg T. On understanding the reluctance to visualize. Zentralblatt für Didaktik der Mathematik. 1994;26(4):109–113.
  • Eisenberg T, DreyfusT. On the reluctance to Visualize in Mathematics. In: Zimmermann W, Cunnigham S, editors. Visualization in teaching and learning Mathematics. Washington, DC: Mathematical Association of America; 1991. p. 25–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.