259
Views
6
CrossRef citations to date
0
Altmetric
Articles

Introducing direction fields to students learning ordinary differential equations (ODEs) through guided inquiry

ORCID Icon, ORCID Icon & ORCID Icon
Pages 331-348 | Received 09 Oct 2018, Published online: 09 Oct 2019

References

  • Afasamaga-Fuata, K. (2004). An undergraduate student’s understanding of differential equations through concept maps and vee diagrams. In Proceedings of the first international conference on concept mapping. Pamplona, Spain.
  • Ainsworth, S. (1999). The functions of multiple representations. Computers and Education, 33, 131–152. doi: 10.1016/S0360-1315(99)00029-9
  • Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In J. K. Gilbert, M. Reiner, & A. Nakama (Eds.), Visualization: Theory and practice in science education (pp. 191–208). Springer.
  • Arnon, I., Cottrill, J., Dubinksy, E., Oktac, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2013). APOS theory: A framework for research and curriculum development in mathematics education. New York: Dordrecht: Springer.
  • Artigue, M., Batanero, C., & Kent, P. (2007). Mathematical thinking and learning at post-secondary level. In F. K. Lester, Jr., (Ed.), Second handbook of research on mathematics teaching and learning vol. 2 (pp. 1011–1049). Charlotte, NC: Information age publishing.
  • Bell, A. (1993). Principles for the design of teaching. Educational Studies in Mathematics, 24(1), 5–34. doi: 10.1007/BF01273293
  • Borrelli, R. L., & Coleman, C. S. (1998). Differential equations, a modelling perspective. New York: John Wiley and Sons.
  • Camacho-Machín, M., Perdomo-Diaz, J., & Santos-Triago, M. (2012). An exploration of students’ conceptual knowledge built in a first ordinary differential equations course (part I). The Teaching of Mathematics, XV(1), 1–20.
  • Carpenter, T. P., & Lehrer, R. (1999). Teaching and learning mathematics with understanding. In E. Fennema, & T. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 19–32). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Challis, N. (2015). Group work within undergraduate mathematics. In M. Grove, T. Croft, J. Kyle, & D. Lawson (Eds.), Transitions in undergraduate mathematics education (pp. 85–96). Birmingham: The University of Birmingham.
  • Cohen, E. G., Lotan, R. A., & Holthuis, N. C. (1997). Organising the classroom for learning. In E. G. Cohen, & R. A. Lotan (Eds.), Working for equity in heterogeneous classrooms (pp. 31–43). New York: Teachers College Press.
  • Crotty, M. (1998). The foundations of social research: Meaning and perspective in the research process. St Leonards, NSW: Sage.
  • Cui, L., Rebello, N. S., Fletcher, P. R., & Bennett, A. G. (2006). Transfer of learning from college calculus to physics courses. In Proceedings of the NARST 2006 National meeting. San Francisco, California . Retreived from https://www.researchgate.net/profile/N_Sanjay_Rebello/publication/242297311_TRANSFER_OF_LEARNING_FROM_COLLEGE_CALCULUS_TO_PHYSICS_COURSES/links/0c960532638f5bfd86000000.pdf
  • Curley, N., & Meehan, M. (2010). Example generation exercises in an introductory analysis course. MSOR Connections, 10(1), 48–51. doi: 10.11120/msor.2010.10010048
  • Davis, P. (1994). Asking good questions about differential equations. The College Mathematics Journal, 25(5), 394–400. doi: 10.1080/07468342.1994.11973643
  • Doughty, L. (2013). Designing, implementing and assessing guided-inquiry based tutorials in introductory physics (PhD thesis). Dublin City University.
  • Doughty, L., McLoughlin, E., & van Kampen, P. (2014). What integration cues, and what cues integration in intermediate electromagnetism. American Journal of Physics, 82(11), 1093–1103. doi: 10.1119/1.4892613
  • Gillies, R. M. (2003). Structuring cooperative group work in classrooms. International Journal of Educational Research, 39, 35–49. doi: 10.1016/S0883-0355(03)00072-7
  • Gollwitzer, H. (1991). Visualisation in differential equations. In W. Zimmermann, & S. Cunningham (Eds.), Visualization in teaching and learning mathematics (pp. 149–155). Washington, DC: Mathematical Association of America.
  • Gresalfi, M. S., & Lester, F. (2009). What’s worth knowing in mathematics? In S. Tobias, & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 264–290). New York, NY: Routledge.
  • Habre, S. (2000). Exploring students’ strategies to solve ordinary differential equations in a reformed setting. Journal of Mathematical Behaviour, 18(4), 455–472. doi: 10.1016/S0732-3123(00)00024-9
  • Habre, S. (2003). Investigating students’ approval of a geometrical approach to differential equations and their solutions. International Journal of Mathematics Education in Science and Technology, 34(5), 651–662. doi: 10.1080/0020739031000148912
  • Hestenes, D. (1998). Who needs physics education research!? American Journal of Physics, 66, 465–467. doi: 10.1119/1.18898
  • Hyland, D., van Kampen, P., & Nolan, B. C. (2017). Outcomes of a service teaching module on ODEs for physics students. International Journal of Mathematics Education in Science and Technology, 49(5), 743–758. doi: 10.1080/0020739X.2017.1410736
  • Jääskeläinen, R. (2010). Think-aloud protocol. In Y. Gambier, & L. van Doorslaer (Eds.), Handbook of translation studies volume 1 (pp. 371–374). Amsterdam: John Benjamins publishing company.
  • Ju, M. K., & Kwon, O. N. (2007). Ways of talking and ways of positioning: Students’ beliefs in an inquiry-oriented differential equations class. Journal of Mathematical Behavior, 26, 267–280. doi: 10.1016/j.jmathb.2007.10.002
  • Keene, K. A., Glass, M., & Kim, J. H. (2011, October). Identifying and Assessing Relational understanding in ordinary differential equations. In Proceedings 2011 frontiers in education (FIE 20110) (p. S4B-1). Rapid City, SD.
  • Krainer, K. (1993). Powerful tasks: A contribution to a high level of acting and reflecting in mathematics instruction. Educational Studies in Mathematics, 24, 65–93. doi: 10.1007/BF01273295
  • Lotan, R. A. (1997). Complex instruction: An overview. In E. G. Cohen, & R. A. Lotan (Eds.), Working for equity in heterogeneous classrooms (pp. 15–27). New York: Teachers College Press.
  • Mallet, D. G., & McCue, S. W. (2009). Constructive development of the solutions of linear equations in introductory ordinary differential equations. International Journal of Mathematics Education in Science and Technology, 40(5), 587–595. doi: 10.1080/00207390902759626
  • McDermott, L. C. (1993). Guest comment: How we teach and how students learn a mismatch? American Journal of Physics, 61, 295–298. doi: 10.1119/1.17258
  • Pointon, A., & Sangwin, C. (2003). An analysis of undergraduate core material in the light of hand-held computer algebra systems. International Journal of Mathematics Education in Science and Technology, 34(5), 671–686. doi: 10.1080/0020739031000148930
  • Rasmussen, C. L. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. Journal of Mathematical Behavior, 20, 55–87. doi: 10.1016/S0732-3123(01)00062-1
  • Rasmussen, C. L., & King, K. D. (2000). Locating starting points in differential equations: A realistic mathematics education approach. International Journal of Mathematical Education in Science and Technology, 31(2), 161–172. doi: 10.1080/002073900287219
  • Rasmussen, C. L., Marrongelle, K., Kwon, O. N., & Hodge, A. (2017). Four goals for instructors using inquiry-based learning. Notices of the American Mathematical Society, 64(11), 1. doi: 10.1090/noti1597
  • Raychaudhuri, D. (2009). Dynamics of a definition: A framework to analyse student construction of the concept of solution to a differential equation. International Journal of Mathematics Education in Science and Technology, 39(2), 161–177. doi: 10.1080/00207390701576874
  • Redish, E. F. (1994). Implications of cognitive studies for teaching physics. American Journal of Physics, 62(9), 796–803. doi: 10.1119/1.17461
  • Rowland, D. R., & Jovanoski, Z. (2004). Student interpretations of the terms in first-order ordinary differential equations in modelling contexts. International Journal of Mathematics Education in Science and Technology, 35(4), 503–516. doi: 10.1080/00207390410001686607
  • Sangwin, C. (2003). New opportunities for encouraging higher level mathematical learning by creative use of emerging computer assessment. International Journal of Mathematics Education in Science and Technology, 34(6), 813–829. doi: 10.1080/00207390310001595474
  • Shaffer, P. S., & McDermott, L. C. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part ii: Design of instructional strategies. American Journal of Physics, 60(11), 994–1003. doi: 10.1119/1.16979
  • Stephan, M., & Rasmussen, C. L. (2002). Classroom mathematical practices in differential equations. Journal of Mathematical Behaviour, 21, 459–490. doi: 10.1016/S0732-3123(02)00145-1
  • Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Teacher Education, 10(4–6), 217–237. doi: 10.1007/s10857-007-9038-8
  • Tall, D. O. (2004). The three worlds of mathematics. For the Learning of Mathematics, 23(3), 29–33.
  • Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27, 20–26. doi: 10.1177/1098214005283748
  • Van Den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9–35. doi: 10.1023/B:EDUC.0000005212.03219.dc
  • Vygotsky, L. (1978). Mind in society: The development of higher mental process. Cambridge, MA: Harvard University Press.
  • Waddy, S., Kim, J. H., & Glass, M. (2009). Tutoring dialogue goals for conceptual understanding of differential equations: Preliminary work. In Proceedings of the 20th Midwest AI and cognitive science conference. Indiana Purdue Fort Wayne.
  • Walker, L. (2015). Enabling students to become independent learners. In M. Grove, T. Croft, J. Kyle, & D. Lawson (Eds.), Transitions in undergraduate mathematics education (pp. 71–84). Birmingham: The University of Birmingham.
  • Yerushalmy, M., & Schwartz, J. L. (1999). A procedural approach to exploration in calculus. International Journal of Mathematics Education in Science and Technology, 30(6), 903–914. doi: 10.1080/002073999287563
  • Zandieh, M., & McDonald, M. (1999). Student understanding of equilibrium solutions in differential equations. In F. Hitt, & M. Santos (Eds.), Proceedings of the 21st annual meeting of the North American chapter of the international group for the psychology of mathematics education (pp. 253–258). Columbus, OH: ERIC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.