322
Views
2
CrossRef citations to date
0
Altmetric
Articles

Approaching Euclidean proofs through explorations with manipulative and digital artifacts

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1535-1566 | Received 01 May 2021, Published online: 31 Mar 2022

References

  • Arıcı, S., & Aslan-Tutak, F. (2015). The effect of origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13(1), 179–200. https://doi.org/10.1007/s10763-013-9487-8
  • Arzarello, F., Bartolini Bussi, M. G., Leung, A. Y. L., Mariotti, M. A., & Stevenson, J. (2012). Experimental approaches to theoretical thinking: Artefacts and proofs. In G. Hanna & M. De Villiers (Eds.), Proof and proving in mathematics education (pp. 97–143). Springer Netherlands. https://doi.org/10.1007/978-94-007-2129-6_5
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72. https://doi.org/10.1007/BF02655708
  • Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253. https://doi.org/10.1007/s10758-010-9169-3
  • Battista, M. T. (2009). Highlights of research on learning school geometry. In T. V. Craine, & R. Rubenstein (Eds.), Understanding geometry for a changing world (pp. 91–108). NCTM.
  • Boakes, N. J. (2006). The effects of Origami lessons on students’ spatial visualization skills and achievement levels in a seventh grade classroom [Doctoral dissertation]. Temple University.
  • Boakes, N. J. (2009). Origami instruction in the Middle School Mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. RMLE Online, 32(7), 1–12. https://doi.org/10.1080/19404476.2009.11462060
  • Budinski, N., Lavicza, Z., & Fenyvesi, K. (2018). Ideas for using GeoGebra and origami in teaching regular polyhedrons lessons. K-12 STEM Education, 4(1), 297–303. https://doi.org/10.29333/iejme/6266
  • De Villiers, M. (2003). The value of experimentation in mathematics. In S. Jaffer, & L. Burgess (Eds.), Proceedings of the ninth National Congress of the Association for Mathematics Education of South Africa: Teaching and learning mathematics in and for changing times (pp. 174–185). Association for Mathematics Education of South Africa.
  • De Villiers, M. (2011). Simply symmetric. Simply symmetric. Learning and Teaching Mathematics, 11, 22–26.
  • Dimmel, J. K., & Herbst, P. G. (2015). The semiotic structure of geometry diagrams: How textbook diagrams convey meaning. Journal for Research in Mathematics Education, 46(2), 147–195. https://doi.org/10.5951/jresematheduc.46.2.0147
  • Duval, R. (1994). Les différentes fonctinnemments d’une figure dans une démarche géométrique. Repères-IREM, 17, 121–138.
  • Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In R. Sutherland, & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 142–157). Springer-Verlag.
  • Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt (Ed.), 21st proceedings of the annual meeting of the north American chapter of the international group for the psychology of mathematics education (pp. 3–26). ERIC Clearinghouse.
  • Fenyvesi, K., Budinski, N., & Lavicza, Z. (2014). Two solutions to an unsolvable problem: Connecting origami and geoGebra in a serbian high school. In G. Greenfield, G. W. Hart, & R. Sarhangi (Eds.), Proceedings of bridges 2014: Mathematics, music, art, architecture, culture (pp. 95–102). Tessellations Publishing.
  • Font, V., Godino, J. D., & Contreras, Á. (2008). From representations to onto-semiotic configurations in analysing Mathematics teaching and learning processes. In L. Radfrod, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 157–173). Sense Publishers. https://doi.org/10.1163/9789087905972_010
  • Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124. https://doi.org/10.1007/s10649-012-9411-0
  • Font, V., Planas, N., & Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática 1. Infancia y Aprendizaje, 33(2), 1–18. https://doi.org/10.1174/021037010790317243
  • Friedman, M. (2018). A History of folding in mathematics. Springer International Publishing. https://doi.org/10.1007/978-3-319-72487-4
  • Frigerio, E. (2002). In praise of the papercup: Mathematics and origami at the university. In T. C. Hull (Ed.), 3rd international meeting of origami science, math, and education (pp. 291–298). A K Peters.
  • Fujita, T., & Jones, K. (2003). The place of experimental tasks in geometry teaching: learning from the textbook designs of the early 20th century. Research in Mathematics Education, 5(1), 47–62. https://doi.org/10.1080/14794800008520114
  • Geretschlager, R. (1995). Euclidean constructions and the geometry of origami. Mathematics Magazine, 68(5), 357–371. https://doi.org/10.1080/0025570X.1995.11996356
  • Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM, 39(1–2), 127–135. https://doi.org/10.1007/s11858-006-0004-1
  • Godino, J. D., Gonzato, M., Cajaraville, J. A., & Fernández, T. (2012). Una aproximación ontosemiótica a la visualización en Educación Matemática. Enseñanza de Las Ciencias, 30(2), 109–130.
  • Golan, M., & Jackson, P. (2009). Origametria: A program to teach geometry and to develop learning skills using the art of origami Origametria in the classroom lesson structure. In R. J. Lang (Ed.), Fourth international meeting of origami science, mathematics, and education (pp. 1–13). Taylor & Francis.
  • Gürbüz, MÇ, Ağsu, M., & Güler, H. K. (2018). Investigating geometric habits of mind by using paper folding. Acta Didactica Napocensia, 11(3–4), 157–174. https://doi.org/10.24193/adn.11.3-4.12
  • Haga, K. (2008). Origamics. Mathematical explorations through paper folding. World Scientific.
  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education. III (pp. 234–283). American Mathematical Society. https://doi.org/10.1090/cbmath/007/07
  • Healy, L. (2000). Identifying and explaining geometrical relationship: Interactions with robust and soft Cabri constructions. In T. Nakahara, & M. Koyama (Eds.), Proceedings of the 24th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 103–117). Hiroshima University.
  • Herbst, P. G., Fujita, T., Halverscheid, S., & Weiss, M. (2017). The learning and teaching of geometry in secondary schools - a modeling perspective (1st ed.). Routledge.
  • Hoffer, A. (1981). Geometry is more than proof. The Mathematics Teacher, 74(1), 11–18. https://doi.org/10.5951/MT.74.1.0011
  • Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana, & V. Villani (Eds.), Perspective on the teaching of geometry for the 21st century (pp. 121–128). Kluwer.
  • Hsieh, F. J., Horng, W. S., & Shy, H. Y. (2012). From exploration to proof production. In G. Hanna, & M. de Villiers (Eds.), Proof and proving in mathematics education (pp. 279–303). Springer. https://doi.org/10.1007/978-94-007-2129-6_12
  • Hull, T. C. (2013). Project origami: Activities for exploring mathematics. A K Peters/CRC Press.
  • Hull, T. C. (2020). Origametry: Mathematical methods in paper folding. Cambridge University Press.
  • Huzita, H. (1989). Axiomatic development of origami geometry. In H. Huzita (Ed.), First International meeting of origami science and technology (pp. 143–158). Università di Padova.
  • Komatsu, K., & Jones, K. (2020). Interplay between paper-and-pencil activity and dynamic-geometry-environment use during generalisation and proving. Digital Experiences in Mathematics Education, 6(2), 123–143. https://doi.org/10.1007/s40751-020-00067-3
  • Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1/2), 151–161. https://doi.org/10.1023/A:1012793121648
  • Laborde, C. (2005). Robust and soft constructions: Two sides of the use of dynamic geometry environments. In S. C. Chu, H. C. Lew, & W. C. Yang (Eds.), Proceedings of the tenth Asian technology conference in mathematics (pp. 22–35). Blacksburg.
  • Lam, T. K., & Pope, S. (2016). Learning mathematics with origami – a mathematics education resource. Association of Teachers of Mathematics.
  • Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in dynamic geometry environments. International Journal of Mathematical Education in Science and Technology, 37(6), 665–679. https://doi.org/10.1080/00207390600712539
  • Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44(1–3), 25–53. https://doi.org/10.1023/A:1012733122556
  • Mariotti, M. A. (2006). Proof and Proving in Mathematics education. In A. Gutiérrez, & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 173–204). Brill | Sense. https://doi.org/10.1163/9789087901127_008
  • Marrades, R., & Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1/2), 87–125. https://doi.org/10.1023/A:1012785106627
  • Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135–156. https://doi.org/10.1007/s10758-007-9115-1
  • Pedemonte, B. (2002). Relation between argumentation and proof in mathematics: Cognitive unity or break? In J. Novotná (Ed.), Proceedings of the 2nd conference of the European Society for research in mathematics education (pp. 70–80). Charles University. https://doi.org/10.1207/S15327884MCA0803
  • Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23–41. https://doi.org/10.1007/s10649-006-9057-x
  • Polya, G. (1954). Mathematics and plausible reasoning. Princeton University Press.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.
  • Senk, S. (1985). How well do students write geometry proofs? The Mathematics Teacher, 78(6), 448–456. https://doi.org/10.5951/MT.78.6.0448
  • Sinclair, N., Pimm, D., & Skelin, M. (2012). Developing essential understanding of geometry in grades 9-12. National Council of Teachers of Mathematics.
  • Soldano, C., Luz, Y., Arzarello, F., & Yerushalmy, M. (2019). Technology-based inquiry in geometry: Semantic games through the lens of variation. Educational Studies in Mathematics, 100(1), 7–23. https://doi.org/10.1007/s10649-018-9841-4
  • Stylianides, G. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9–16.
  • Tomaschko, M., Arkün Selay, K., & Hohenwarter, M. (2018). Opportunities for participation, productivity, and personalization through GeoGebra Mathematics apps. In A. A. Khan, & S. Umair (Eds.), Handbook of research on mobile devices and smart gadgets in K-12 education (pp. 45–56). IGI Global. https://doi.org/10.4018/978-1-5225-2706-0.ch004
  • Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry. CDASSG project. University of Chicago.
  • Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264–272. https://doi.org/10.1080/0020739X.2010.519797
  • Wiles, P. (2013). Folding corners of the habits of mind. Mathematics Teaching in the Middle School, 19(4), 208–213. https://doi.org/10.5951/mathteacmiddscho.19.4.0208
  • Zaslavsky, O., Nickerson, S. D., Stylianides, A. J., Kidron, I., & Landman, G. W. (2012). The need for Proof and Proving: Mathematical and pedagogical perspectives. In G. Hanna, & M. De Villiers (Eds.), Proof and Proving in Mathematics education (pp. 215–229). Springer. https://doi.org/10.1007/978-94-007-2129-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.