236
Views
1
CrossRef citations to date
0
Altmetric
Articles

Formulating a conjecture through an identification of robust invariants with a dynamic geometry system

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1681-1703 | Received 02 Jun 2021, Published online: 11 Dec 2022

References

  • Abadi, & Chairani, Z. (2020). Indonesia: The development of mathematics teacher education in Indonesia. In B. R. Vogeli & M. E. A. el Tom (Eds.), Mathematics and its teaching in the Muslim world (pp. 75–95). World Scientific.
  • Anwar, L., Mali, A., & Goedhart, M. J. (2021). The effect of proof format on reading comprehension of geometry proof: The case of Indonesian prospective mathematics teachers. Eurasia Journal of Mathematics, Science and Technology Education, 17(4), 1–15. https://doi.org/10.29333/ejmste/10782
  • Arzarello, F., Bussi, M. G. B., Leung, A. Y. L., Mariotti, M. A., & Stevenson, I. (2011). Experimental approaches to theoretical thinking: Artefacts and proofs. In G. Hanna & M. de Villiers (Eds.), New ICMI study series (Vol. 15, pp. 97–143). Springer. https://doi.org/10.1007/978-94-007-2129-6_5
  • Baccaglini-Frank, A. (2012). Dragging and making sense of invariants in dynamic geometry. The Mathematics Teacher, 105(8), 616–620. https://doi.org/10.5951/mathteacher.105.8.0616
  • Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253. https://doi.org/10.1007/s10758-010-9169-3
  • Baccaglini-Frank, A., & Mariotti, M. A. (2011). Conjecture-generation through dragging and abduction in dynamic geometry. In A. Méndez-Vilas (Ed.), Education in a technological world: Communicating current and emerging research and technological efforts (pp. 100–107). Formatex.
  • Boero, P., Garuti, R., & Lemut, E. (2007). Approaching theorems in grade VIII. In P. Boero (Ed.), Theorems in school: From history epistemology and cognition to classroom practice (pp. 249–264). Sense Publishers. https://doi.org/10.1163/9789087901691_015
  • Boero, P., Garuti, R., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional school approach to theorems: A hypothesis about the cognitive unity of theorems. In L. P. y. A. Gutiérrez (Ed.), Proceedings of the 20th PME Conference of the International Group for Psychology of Mathematics Education, Valencia, Universitat de València (Vol. 2, pp. 113–120). PME.
  • Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., & Weitzhofer, S. (2015). Automated theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55(1), 39–59. https://doi.org/10.1007/s10817-015-9326-4
  • Christou, C., Mousoulides, N., Pittalis, M., Pitta-pantazi, D., Gap, T., & Proof, B. (2004). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2(3), 339–352. https://doi.org/10.1007/s10763-004-6785-1
  • De Villiers, M., & Heidemen, N. (2014). Conjecturing, refuting and proving within the context of dynamic geometry. Learning and Teaching Mathematics, 17, 20–26.
  • Durand-Guerrier, V., Boero, P., Douek, N., Epp, S. S., & Tanguay, D. (2012). Examining the role of logic in teaching proof. In V. M. G. de Hanna (Ed.), Proof and proving in mathematics education: New ICMI study series (Vol. 15, pp. 369–389). Springer. https://doi.org/10.1007/978-94-007-2129-6_16
  • Fernández-León, A., Gavilán-Izquierdo, J. M., & Toscano, R. (2020). A case study of the practices of conjecturing and proving of research mathematicians. International Journal of Mathematical Education in Science and Technology, 52(5), 767–781. https://doi.org/10.1080/0020739X.2020.1717658
  • Goldin, G. A. (1997). Chapter 4: Observing mathematical problem solving through task-based interviews. Journal for Research in Mathematics Education. Monograph, 9, 40–62. https://doi.org/10.2307/749946
  • Hanna, G., & de Villiers, M. (2008). ICMI study 19: Proof and proving in mathematics education. ZDM – International Journal on Mathematics Education, 40(2), 329–336. https://doi.org/10.1007/s11858-008-0073-4
  • Healy, L. (2000). Identifying and explaining geometrical relationship: Interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 103–117). PME. https://files.eric.ed.gov/fulltext/ED452031.pdf#page=138
  • Lannin, J., Ellis, A. B., & Elliott, R. (2011). Developing essential understanding of mathematical reasoning for teaching mathematics in prekindergarten-grade 8. National Council of Teachers of Mathematics.
  • Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernment of invariants in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–460. https://doi.org/10.1007/s10649-013-9492-4
  • Lin, F. L., Yang, K. L., Lee, K. H., Tabach, M., & Stylianides, G. J. (2012). Principles of task design for conjecturing and proving. In G. Hanna & M. D. Villiers (Eds.), Proof and proving in mathematics education: The 19th ICMI study (Vol. 15, pp. 305–325). Springer. https://doi.org/10.1007/978-94-007-2129-6_13
  • Lynch, A. G., & Lockwood, E. (2019). A comparison between mathematicians’ and students’ use of examples for conjecturing and proving. Journal of Mathematical Behavior, 53, 323–338. https://doi.org/10.1016/j.jmathb.2017.07.004
  • Maher, C. A., & Sigley, R. (2014). Task-based interviews in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 579–629). Springer. https://doi.org/10.1007/978-94-007-4978-8
  • Mariotti, M. A. (2012). Proof and proving in the classroom: Dynamic geometry systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163–185. https://doi.org/10.1080/14794802.2012.694282
  • Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In S. Rezat, M. Hattermann, & A. Peter-Koop (Eds.), Transformation – a fundamental idea of mathematics education (pp. 155–172). Springer. https://doi.org/10.1007/978-1-4614-3489-4_8
  • Mariotti, M. A., & Pedemonte, B. (2019). Intuition and proof in the solution of conjecturing problems. ZDM – Mathematics Education, 51(5), 759–777. https://doi.org/10.1007/s11858-019-01059-3
  • Miles, M. B., & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. Sage.
  • Miyazaki, M., Fujita, T., & Jones, K. (2017). Students’ understanding of the structure of deductive proof. Educational Studies in Mathematics, 94(2), 223–239. https://doi.org/10.1007/s10649-016-9720-9
  • Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135–156. https://doi.org/10.1007/s10758-007-9115-1
  • Pawlaschyk, T., & Wegner, S. A. (2020). Engaging students in conjecturing through homework in real analysis and differential equations. International Journal of Mathematical Education in Science and Technology, 51(3), 439–450. https://doi.org/10.1080/0020739X.2019.1656832
  • Stylianides, A. J. (2007). Proof and proving in mathematics education. Journal for Research in Mathematics Education, 38, 289–321. https://doi.org/10.1007/978-94-007-2129-6
  • Stylianides, G. J. (2008). Proof in the school mathematics curriculum: A historical perspective. Mediterranean Journal for Research in Mathematics Education, 7(1), 23–50.
  • Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical Thinking and Learning, 11(4), 258–288. https://doi.org/10.1080/10986060903253954
  • Velleman, D. J. (2006). How to prove it: A structured approach. Cambridge University Press. https://doi.org/10.1017/CBO9780511808234
  • Weber, K., Stylianides, A. J., & Stylianides, G. J. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 237–266). National Council of Teachers of Mathematics.
  • Yang, K. L., & Lin, F. L. (2008). A model of reading comprehension of geometry proof. Educational Studies in Mathematics, 67(1), 59–76. https://doi.org/10.1007/s10649-007-9080-6
  • Yang, K. L., & Lin, F. L. (2012). Effects of reading-oriented tasks on students’ reading comprehension of geometry proof. Mathematics Education Research Journal, 24(2), 215–238. https://doi.org/10.1007/s13394-012-0039-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.