80
Views
15
CrossRef citations to date
0
Altmetric
Research Article

NICOTINE IMPROVES LEARNING AND MEMORY IN RATS: MORPHOLOGICAL EVIDENCE FOR ACETYLCHOLINE INVOLVEMENT

, , , &
Pages 1163-1179 | Published online: 07 Jul 2009

References

  • Abrous, D. N., Adriani, W., Montaron, M. F., Aurousseau, G. R., Moal, M. L., & Piazza, P.V. (2002). Nicotine self-administration impairs hippocampal plasticity. The Journal of Neuroscience, 22(9), 3656–3662.
  • Algan, O., Furedy, J. J., Demirgören, S., Vincent, A., & Pögün, S. (1997). Effects of tobacco smoking and gender on interhemispheric cognitive function: Performance and confidence measures. Behavioral Pharmacology, 8, 416–428.
  • Arthur, D., & Levin, E. D. (2002). Chronic inhibition of alpha4beta2 nicotinic receptors in the ventral hippocampus of rats: Impacts on memory and nicotine response. Psychop- harmacology (Berl.), 160(2), 140–145.
  • Aubert, I., Araujo, D. M., Cecyre, D., Robitaille, Y., Gauthier, S., & Quirion, R. (1992). Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. The Journal of Neuroscience, 58, 529–541.
  • Bammer, G. (1982). Pharmacological investigations of neurotransmitter involvement in passive avoidance responding: A review and some new results. Neuroscience Biobehavioral Review, 6, 247–296.
  • Bancroft, A., & Leven, E. D. (2000). Ventral hippocampal alpha4 beta2 nicotinic recep- tors and chronic nicotine effects on memory. Neuropharmacology, 19, 2770–2778.
  • Barazangi, N., & Role, L. W. (2001). Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. Journal of Neurophysiol- ogy, 86(1), 463–474.
  • Bartus, R. T., Dean, R. L., Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–417.
  • Benwell, M. E. M., Balfour, D. J. K., & Anderson, J. M. (1988). Evidence that tobacco smoking increases the density of (-)-[3H]-nicotine binding sites in human brain. Jour- nal of Neurochemistry, 50, 1243–1247.
  • Bettany, J. H., & Levin, E. D. (2001). Ventral hippocampal α7 nicotinic receptor blockade and chronic nicotine effects on memory performance in the radial-arm maze. Pharma- cology, Biochemistry, and Behavior, 70, 467–474.
  • Breese, C. R., Marks, M. J., Logel, J., Adams, C. E., Sullivan, B., Collins, A. C., & Leonard, S. (1997). Effects of smoking history on [3H]-nicotine binding in human postmortem brain. Journal of Pharmacology and Experimental Therapeutics, 282, 7–13.
  • Buccafusco, J. J., & Jackson, W. J. (1991). Beneficial effects of nicotine administered prior to a delayed matching-to-sample task in young and aged monkeys. Neurobiology of Aging, 12, 233–238.
  • Clarke, P. B. S. (1987). Nicotine and smoking: A perspective from animal studies. Psychopharma- cologia, 92, 135–143.
  • Collins, A. C., & Marks, M. J. (1987). The effects of chronic nicotine administration on brain nicotinic receptor numbers. In W. R. Martin, G. R. Van loon, E. T. Iwamoto, & L. Davis (Eds.), Tobacco smoking and nicotine. Plenum Press, New York, pp. 439–450.
  • Cregan, E., Ordy, J. M., Palmer, E., Blosser, J., Wengenack, T., & Thomas, G. (1989). Spatial working memory enhancement by nicotine of aged long Evans rats in the T- maze. Social Neuroscience Abstracts, 15, 731.
  • Decker, M. W., Majchrzak, M. J., & Anderson, D. J. (1992). Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Research, 572, 281–285.
  • Dunnett, S. B., & Martel, F. L. (1990). Proactive interference effects on short-term memory in rats: 1. Basic parameters and drug effects. Behavioral Neuroscience, 104, 655–665.
  • Elrod, K., & Buccafusco, J. J. (1991). Correlation of the amnestic effects of nicotinic an- tagonists with inhibition of regional brain acetylcholinc synthesis in rats. Journal of Pharmacology and Experimental Therapeutics, 258, 403–409.
  • Erickson, C. K. (1971). Studies on mechanism of avoidance facilitation by nicotine. Psychopharmacologia, 22, 357–368.
  • Ernst, M., Matochik, Ja., Heishman, S. J., VanHorn, J. D., Jons, P. H., Flenningfield, J. E., & London, E. D. (2001). Effect of nicotine on brain activation during performance of a working memory task. Proceedings of National Academy of Sciences, USA., 98(8), 4728–4733.
  • Evangelista, A. M., & Izquirierdo, I. (1972). Effects of atropine on avoidance condition: Interaction with nicotine and comparison with N-methyl-atropine. Psychopharmacologia, 27, 241–248.
  • Fedele, E., Varnier, G. Ansaldo, M. A., & Raiteri, M. (1998). Nicotine administration stimulates the in vivo N-methyl-D-aspartate receptor/nitric oxide/cyclic GMP pathway in rat hippocampus through glutamate release. British Journal of Pharmacology, 125(5), 1042–1048.
  • Felix, R., & Levin, E. D. (1997). Nicotinic antagonist administration into the ventral hippo- campus and spatial working memory in rats. Neuroscience, 81, 1009–1017.
  • Fisher, J. L., Pidoplichko, V. I., & Dani, J. A. (1998). Nicotine modifies the activity of ventral tegmental area dopaminergic neurons and hippocampal GABAergic neurons. Journal de Physiologies (Paris), 92(3–4), 209–213.
  • Fujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846(1), 137–143.
  • Fujii, S., Jia, Y., Yang, A., & Sumikawa, K. (2000). Nicotine reverses GABAergic inhibi- tion of long-term potentiation induction in the hippocampal CAl region. Brain Re- search, 863(1–2), 259–265.
  • Fujii, S., & Sumikawa, K. (2001). Acute and chronic nicotine exposure reverse age-related declines in the induction of long-term potentiation in the rat hippocampus. Brain Re- search, 894(2), 347–353.
  • Gilliam, D. M., & Schlesinger, K. (1985). Nicotine-produced relearning deficit in CS7B1/ 6J and DBA/2J mice. Psychopharmacology, 86, 291–295.
  • Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. (1996). Hippocampal syn- aptic transmission enhanced by low concentrations of nicotine. Nature, 383, 713–716.
  • Haroutunian, V., Barnes, E., & Davis, K. L. (1985). Cholinergic modulation of memory in rats. Psychopharmacology, 87, 266–271.
  • Henningfield, J. E., Keenan, R. M., & Clarke, P. B. S. (1996). In C. R. Schuster & M. J. Kuhar (Eds.), Pharmacological aspects of drug dependence (pp. 271–314), Chapter 8 Nicotine. Germany: Springer-Verlag, Berlin Heidelberg.
  • Hodges, H., Gray, J. A., Allen, Y., & Sinden, J. (1991). The role of the forebrain cholin- ergic projection system in performance in the radial-maze in memory-impaired rats. In F. Aldkofer & K. Thurau (Eds.), Effects of nicotine on biologic systems (pp. 389–399). Boston: Birkhauser Verlag.
  • Houlihan, M. E., & Pritchard, W. S., & Robinson, J. H. (2001). Effects of smoking/nico- tine on performance and event-related potentials during a short-term memory scanning task. Psychopharmacology (Berl.), 156(4), 388–396.
  • Jones, G. M. M., Sahakian, B. J., Levy, R., Warburton, D. M., & Gray, J. A. (1992). Effect of acute subcutaneous nicotine on attention, information processing and short- term memory in Alzheimer’s disease. Psychopharmacology, 108, 485–494.
  • Kem, W. R. (2000). The brain alpha 7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: Studies with DMXBA (GTS-21). Behavioural Brain Research, (1–2), 169–181.
  • Lange, K. W., Wells, F. R., Jenner, P., & Marsden, C. D. (1993). Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s Disease. Journal of Neurochemistry, 60, 197–203.
  • Levin, E. D. (1992). Nicotinic systems and cognitive function. Psychopharmacology, 108, 417–431.
  • Levin, E. D., Bettegowda, C., Blosser, J., & Gordon, J. (1999). AR-R 17779 and alpha7 nicotinic agonist, improves learning and memory in rats. Behavioral Pharmacology, 10(6–7), 675–680.
  • Levin, E. D., Castonguay, M., & Ellison, G. D. (1987). Effects of nicotinic receptor blocker, mecamylamine on radial arm maze performance in rats. Behavioral and Neural Biol- ogy, 48, 206–212.
  • Levin, E. D., & Rose, J. E. (1991). Nicotinic and muscarinic interactions and choise accu- racy in the radial-maze. Brain Research Bulletin, 27, 125–128.
  • Levin, E. D., &. Simon, B. B. (1998). Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology, 138(3–4), 217–230.
  • Marks, M. J., Romm, E., Campbell, S. M., & Collins, A. C. (1989). Variation of nicotinic binding sites among inbred strains. Pharmacology Biochemistry and Behavior, 33, 679– 689.
  • Matsuyama, S., Matsumoto, A., Enomoto, T., & Nishizaka, T. (2000). Activation of nico- tinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. European Journal of Neuroscience, 12(10), 3741–3747.
  • Maurice, T., Lockhart, B. P., & Privat, A. (1996). Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Research, 706, 181–193.
  • McGehee, D. S., Heath, M. J. S., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269, 1692–1696.
  • Mundy, W. R., & Iwamoto, E. T. (1988). Nicotine impairs acquisition of radial-arm maze performance in rats. Pharmacology Biochemistry and Behavior, 40, 119–122.
  • Newcomer, J. W., & Krystal, J. H. (2001). NMDA receptor regulation of memory and behavior. Hippocampus, 11, 529–542.
  • Newhouse, P. A., & Kelton, M. (2000).Nicotinic systems in central nervous systems dis- ease: Degenerative disorders and beyond. Pharmaceutica Acta Helvetiae, 74(2–3), 91– 101.
  • Olariu, A., Tran, M. H., Yamada, K., Mizuno, M., Hefco, V., & Nabeshima, T. (2001). Memory deficits and increased emotionality induced by beta-amyloid (25–35) are cor- related with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. Journal of Neural Transmission, 188(8–9), 1065–1079.
  • Park, S., Knopick, C., McGurk, S., & Meltzer, H. Y. (2000). Nicotine impairs spatial working memory while leaving spatial attention intact. Neuropsychopharmacology, 22(2), 200– 209.
  • Pauly, J. R, Marks, M. J., Stitzel, J. A., Gross, S. D., & Collins, A. C. (1991). Chronic nicotine infusions and regulation of CNS nicotinic cholinergic receptors: An autoradio- graphic study. Journal of Pharmacology and Experimental Therapeutics,. 258, 1127– 1136.
  • Pauly, J. R., Sheehan, K., Sparks, J. A., & Gairola, C. G. (1997). Increased density of neuronal nicotinic receptor subtypes in rats repeatedly exposed to tobacco smoke. So- ciety for Research on Nicotine and Tobacco Annual Meeting, Paper 131.
  • Pauly, R. (1998). Nicotinic cholinergic receptor deficits in Alzhemier’s disease: Where’s the smoke? Alzheimer Disease Review, 3, 28–34.
  • Pomerleau, O. F., & Rosecrans, J. (1989). Neuroregulatory effects of nicotine. Psychoneuro- endocrinology, 14(6), 407–423.
  • Pögün, S., Demirgören, S., Kutay, F. Z., & Okur, B. (1992). Learning induces changes in the central cholinergic system of the rat in a sexually dimorphic pattern. International Journal of Psychophysiology, 13, 17–23.
  • Sahakian, B. J., & Coull, J. T. (1994). Nicotine and tetrahydroaminoacradine: evidence for improved attention in patients with dementia of the Alzhemier type. Drug Develop- ment Research, 31, 80–88.
  • Sansone, M., Castellano, C., Battaglia, M., & Amassari-Teule, M. (1991). Effects of oxiracetam- nicotine combinations on active and passive avoidance learning in mice. Pharmacol- ogy, Biochemistry, and Behavior, 39, 197–200.
  • Sasaki, H., Yanai, M., Megoro, K., Sekizawa, K., Ikarashi, Y., Maruyatima, Y., Yamamoto, M., Matsuzaki, Y., & Takishima, T. (1991). Nicotine improves cognitive disturbance in rodents fed with a choline-deficient diet. Pharmacology, Biochemistry, and Behav- ior, 38, 921–925.
  • Stolerman, I. P., Mirza, N. R., Hahn, B., & Shoaib, M. (2000). Nicotine in an animal model of attention. European Journal of Pharmacology, 393(1–3), 147–154.
  • Villarreal, D. M., Do, V., Haddad, E., & Derrick, E. (2002). NMDA receptor antagonists sustain LTP and spatial memory: Active processes mediate LTP decay. Nature Neuro- science, 5(1), 48–52.
  • Warburton, D. M. (1992). Nicotine as a cognitive enhancer. Progress in Neuro-Psycho- pharmacology & Biological Psychiatry, 16, 181–191.
  • Watanabe, H., Ni, J. W., Sakai, Y., Matsumoto, K., Murakami, Y., & Tohda, M. (1996). Permanent occlusion of bilateral internal carotid arteries produces cognitive deficits in two learning behavior tasks. Japanese Journal of Psychopharmacology, 16, 19–24.
  • Wesnes, K., & Warburton, D. M. (1983). Smoking, nicotine and human performance. Pharmacology & Therapeutics, 21, 189–208.
  • White, H. K., & Levin, E. D. (1999). Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology (Berl.), 143(2), 158–165.
  • Williams, M., & Arneric, sp. (1997). Alzheimer’s Disease: Prospects for treatment in the next decade. In J. D. Brioni & M. W. Decker (Eds.), Pharmacological treatment of Alzheimer’s Disease. New York: Wiley-Liss Inc.
  • Wilson, A. L., Langley, L. K., Monley, J., Bauer, T., Rottunda, S., McFalls, E., Kovera, C., & McCarten, J. R. (1995). Nicotine patches in Alzheimer’s disease: Pilot study on learning, memory and safety. Pharmacology, Biochemistry, and Behavior, 51, 509– 514.
  • Wonnacott, S. (1990). The paradox of nicotinic acetylcholinc receptor upregulation by nicotine. Trends in Pharmacological Sciences, 11, 216–219.
  • Yamaguchi, T., Suzuki, M., & Yamamoto, M. (1995). YM796 a novel muscaninic ago- nist, improves the impairment of learning behavior in a rat model of chronic focal cerebral ischemia. Brain Research, 669, 107–114.
  • Zoli, M., Picciotto, M. R., Ferrari, R., Cocchi, D., & Changeux, J. P. (1999). Increased neurodegenenation during ageing in mice lacking high-affinity nicotine receptors. EMBO Journal, 18(5), 1235–1244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.