28
Views
2
CrossRef citations to date
0
Altmetric
Original

VOLTAGE-CLAMP PREDICTIONS BY GOMPERTZ KINETICS MODEL RELATING SQUID-AXON NA+-GATING AND IONIC CURRENTS

Pages 1415-1441 | Received 24 Nov 2004, Published online: 07 Jul 2009

REFERENCES

  • Armstrong C. M. Voltage-dependent ion channels and their gating. Physiological Reviews 1992; 72(4, Suppl.)S5–S13, [PUBMED], [INFOTRIEVE], [CSA]
  • Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channel. Journal of General Physiology 1974; 63: 533–552, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Armstrong C. M., Gilly W. F. Fast and slow steps in the activation of sodium channels. Journal of General Physiology 1979; 74: 533–552, [CSA], [CROSSREF]
  • Batschelet E. Introduction to mathematics for life scientists. Springer, New York 1971
  • Bezanilla F. Voltage-dependent gating: Gating current measurement and interpretation. Ionic channels in cells and model systems, R. Latorre. Plenum Press, New York 1986; pp. 37–52
  • Cole K. S., Moore J. W. Potassium ion current in the squid giant axon. Dynamic characteristics. Biophysical Journal 1960; 1: 161–202, [PUBMED], [INFOTRIEVE], [CSA]
  • Conti F., Stuhmer W. Quantal charge redistributions accompanying the structural transitions of sodium channels. European Biophysics Journal 1989; 17: 53–59, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Easton D. M. Exponentiated exponential model (Gompertz kinetics) of Na+ and K+ conductance changes in squid giant axon. Biophysical Journal 1978; 22: 15–28, [PUBMED], [INFOTRIEVE], [CSA]
  • Easton D. M. Gating current predicted from conductance change during voltage clamp of squid giant axon. International Congress of the International Union of Physiological Sciences. 1989; Abstr. XXXI: p. 366
  • Easton D. M. Macroscopic INa changes in proportion to fast and slow components of gating current in squid giant axon. Congress of the International Union of Physiological Sciences. 1993; Abstr. XXXII: p. 204, 7/8
  • Easton D. M. Gompertz survival kinetics: Fall in number alive or growth in number dead?. Theoretical Population Biology 1995; 48: 1–6, [CSA], [CROSSREF]
  • Forty years of membrane current in nerve. Physiological Reviews, D. Gardner, 1992; 72: S1–S190, (4, Suppl.),
  • Goldman L. Kinetics of channel gating in excitable membranes. Quarterly Review of Biophysics 1975; 9: 491–526, [CSA]
  • Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society 1825; XXIV: 513–585, [CSA]
  • Greeff N. G., Keynes R. D., Van Helden D. F. Fractionation of the asymmetry currents in the squid giant axon into activating and non-inactivating components. Proceedings of the Royal Society of London B Biological Sciences. 1982; 215: 315–389, [CSA]
  • Hodgkin A. L., Huxley A. F. The components of membrane conductance in the giant axon of Loligo. Journal of Physiology (London) 1952a; 116: 473–496, [CSA]
  • Hodgkin A. L., Huxley A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. Journal of Physiology (London) 1952b; 116: 497–506, [CSA]
  • Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London) 1952c; 117: 500–544, [CSA]
  • Horn R., Korn S. J. Model selection: Reliability and bias. Biophysical Journal 1989; 55: 379–381, [PUBMED], [INFOTRIEVE], [CSA]
  • Huxley A. F. Excitation and conduction in nerve quantitative analysis. Science (Washington) 1964; 145: 1154–1159, [CSA]
  • Keynes R. D. Modelling the sodium channel. Ion channels in neural membranes, J. M. Ritchie, R. D. Keynes, L. Bolis. Liss, New York 1986; pp. 85–101
  • Keynes R. D. A series-parallel model of the voltage-gated sodium channels. Proceedings of the Royal Society of London B Biological Sciences 1990; 240: 425–432, [CSA]
  • Keynes R. D. A new look at the mechanism of activation and inactivation of voltage-gated ion channels. Proceedings of the Royal Society of London B Biological Sciences 1992; 249: 107–112, [CSA]
  • Keynes R. D., Greeff N. G., Forster I. C. Kinetic analysis of the sodium current in the squid giant axon. Proceedings of the Royal Society of London B Biological Sciences 1990; 240: 411–423, [CSA]
  • Keynes R. D., Greeff N. G., Van Helden D. F. The relationship between the activating fraction of the asymmetry current and gating of the sodium channel in the squid giant axon. Proceedings of the Royal Society of London B Biological Sciences. 1982; 215: 391–404, [CSA]
  • Keynes R. D., Rojas E. Kinetics and steady-state properties of the charge system controlling sodium conductance in the squid giant axon. Journal of Physiology (London) 1974; 239: 393–434, [CSA]
  • Keynes R. D., Rojas E. The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. Journal of Physiology (London) 1976; 255: 157–189, [CSA]
  • Levitt D. G. Continuum models of voltage dependent gating. Biophysical Journal 1989; 55: 485–498, [CSA]
  • Matteson D. R., Armstrong C. M. Sequential models of sodium channel gating. Current Topics in Membranes and Transport 1984; 22: 332–352, [CSA]
  • Mellor J. W. Higher mathematics for students of chemistry and physics. Dover, New York 1946
  • Silva M. R. E. A thermodynamic approach to problems of drug antagonism II. A microphysical model of the phenomenon of recovery. Physiological Chemistry and Physics 1970; 2: 503–515, [CSA]
  • Stihmers J. R., Bezanilla F., Taylor R. E. Squid axon sodium channel: Gating current without rising phase. Biophysical Journal 1985; 45: 12a, [CSA]
  • Stuhmer W., Conti F., Suzuki H., Wang X., Noda M., Yahagi N., Kubo H., Numa S. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989; 339: 597–603, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Taylor R. E., Bezanilla F. Sodium and gating current time shifts resulting from changes in initial conditions. Journal of General Physiology 1983; 81: 773–784, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Vandenberg C. A., Bezanilla F. A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid axon. Biophysical Journal 1991; 60: 1511–1533, [PUBMED], [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.