66
Views
8
CrossRef citations to date
0
Altmetric
Original

Protection in Glutamate-Induced Neurotoxicity by Imidazoline Receptor Agonist Moxonidine

, , , &
Pages 1705-1717 | Received 15 Aug 2005, Accepted 12 Jun 2006, Published online: 15 Sep 2009

REFERENCES

  • Albright T. D., Jessell T. M., Kandel E. R., Poster M. I. Neural science: A century of progress and the mysteries that remain. Cell 2000; 18: 1–55
  • Aroor A. R., Shukla S. D. MAP kinase signaling in diverse effects of ethanol. Life Science 2004; 74: 2339–2364
  • Arundine M., Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cellular and Molecular Life Sciences 2004; 61: 657–668
  • Berkman M. Z., Zirh T. A., Berkman K., Pamir M. N. Tizanidine is an effective agent in the prevention of focal cerebral ischemia in rats: An experimental study. Surgical Neurology 1998; 50: 264–271
  • Bousquet P., Feldman J., Schwartz J. Central cardiovascular effects of alpha-adrenergic drugs; differences between catecholamines and imidazolines. The Journal of Pharmacology and Experimental Therapeutics 1984; 230: 232–236
  • Chase T. N., Oh J. D. Striatal mechanisms and pathogenesis of parkinsonian signs and motor complications. Annals of Neurology 2000; 47: 7–14
  • Chen X., Lan X., Mo S., Qin J., Li W., Liu P., et al. p38 and ERK, but not JNK, are involved in copper-induced apoptosis in cultured cerebellar granule neurons. Biochemical and Biophysical Research Communications 2009; 379(4)944–948
  • Choi D. W. Ionic dependence of glutamate neurotoxicity. The Journal of Neuroscience 1987; 7: 369–379
  • Choi S. H., Choi D. H., Lee J. J., Park M. S., Chun B. G. Imidazoline drugs stabilize lysosomes and inhibit oxidative cytotoxicity in astrocytes. Free Radical Biology & Medicine 2002; 32: 394–405
  • Coyle J. T., Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262: 689–695
  • Csete K., Papp J. G. Effects of moxonidine on corticocerebral blood flow under normal and ischemic conditions in conscious rabbits. Journal of Cardiovascular Pharmacology 2000; 35: 417–421
  • Eglen R. M., Hudson A. L., Kendall D. A., Nutt D. J., Morgan N. G., Wilson V. G., et al. Seeing through a glass darkly: Casting light on imidazoline ‘I’ sites. Trends in Pharmacological Sciences 1998; 19: 381–390
  • Feinstein D. L., Reis D. J., Regunathan S. Inhibition of astroglial nitric oxide synthase type 2 expression by idazoxan. Molecular Pharmacology 1999; 55: 304–308
  • Fernandes A., Falcão A. S., Silva R. F., Brito M. A., Brites D. MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. European Journal of Neuroscience 2007; 25(4)1058–1068
  • Garcia-Sevilla J. A., Escriba P. V., Guimon J. Imidazoline receptors and human brain disorders. Annals of the New York Academy of Sciences 1999; 21(881)392–409
  • Gilad G. M., Salame K., Rabey J. M., Gilad V. H. Agmatine treatment is neuroprotective in rodent brain injury models. Life Sciences 1996; 58: 41–46
  • Halaris A., Plietz J. Agmatine : Metabolic pathway and spectrum of activity in brain. CNS Drugs 2007; 21(11)885–900
  • Kemp J. A., McKernan R. M. NMDA receptor pathways as drug targets. Nature Neuroscience 2002; 5: 1039–1042
  • Klimaviciusa L., Safiulina D., Kaasik A., Klusa V., Zharkovsky A. The effects of glutamate receptor antagonists on cerebellar granule cell survival and development. Neurotoxicology 2008; 29(1)101–108
  • Kostrzewa R. M. Evolution of neurotoxins: From research modalities to clinical realities. Current Protocols in Neuroscience 2009, Jan;Chapter 1:Unit 1.18
  • Maiese K., Pek L., Berger S. B., Reis D. J. Reduction in focal cerebral ischemia by agents acting at imidazole receptors. Journal of Cerebral Blood Flow and Metabolism 1992; 12: 53–63
  • Meldrum B. S. Implications for neuroprotective treatments. Progress in Brain Research 2002; 135: 487–495
  • Michaelis M. L. Drugs targeting Alzheimer's disease: Some things old and some things new. The Journal of Pharmacology and Experimental Therapeutics 2003; 304: 897–904
  • Milhaud D., Fagni L., Bockaert J., Lafon-Cazal M. Imidazoline-induced neuroprotective effects result from blockade of NMDA receptor channels in neuronal cultures. Neuropharmacology 2000; 39: 2244–2254
  • Montoliu C., Llansola M., Monfort P., Corbalan R., Fernandez-Marticorena I., Hernandez-Viadel M. L., et al. Role of nitric oxide and cyclic GMP in glutamate-induced neuronal death. Neurotoxicity Research 2001; 3: 179–188
  • Olmos G., DeGregorio-Rocasolano N., Paz Regalado M., Gasull T., Assumpcio-Boronat M., Trullas R., et al. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. British Journal of Pharmacology 1999; 127: 1317–1326
  • Ozog M. A., Wilson J. X., Dixon S. J., Cechetto D. F. Rilmenidine elevates cytosolic free calcium concentration in suspended cerebral astrocytes. Journal of Neurochemistry 1998; 71: 1429–1435
  • Penner S. B., Smyth D. D. Central and renal I1 imidazoline preferring receptors: Two unique sites mediating natriuresis in the rat. Cardiovascular Drugs and Therapy 1994; 8: 43–48
  • Pérez-Otaño I., Ehlers M. D. Learning from NMDA receptor trafficking: Clues to the development and maturation of glutamatergic synapses. Neurosignals 2004; 13(4)175–189
  • Reis D. J., Regunathan S., Golanov E. V., Feinstein D. L. Protection of focal ischemic infarction by rilmenidine in the animal: Evidence that interactions with central imidazoline receptors may be neuroprotective. The American Journal of Cardiology 1994; 74: 25A–30A
  • Surprenant A., Horstman D. A., Akbarali H., Limbird L. E. A point mutation of alpha 2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 1992; 257: 977–980
  • Talke P., Bickler P. E. Effects of dexmetedomide on hypoxia-evoked glutamate release and glutamate receptor activity in hippocampal slices. Anesthesiology 1996; 85: 551–557
  • Wahl A. S., Buchthal B., Rode F., Bomholt S. F., Freitag H. E., Hardingham G. E., et al. Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-d-aspartate receptors. Neuroscience 2009; 158(1)344–352
  • Xu J., Wojcik W. J. Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: Blockade by islet-activating protein. Journal of Pharmacology 1986; 239: 568–573
  • Zhang Y. Clonidine preconditioning decreases infarct size and improves neurological outcome from transient forebrain ischemia in the rat. Neuroscience 2004; 125: 625–631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.