1,001
Views
36
CrossRef citations to date
0
Altmetric
Review Article

An overview of circulating cell-free microRNAs as putative biomarkers in Alzheimer's and Parkinson's Diseases

, , &
Pages 547-558 | Received 26 Jan 2016, Accepted 02 Jul 2016, Published online: 20 Jul 2016

References

  • Grasso M, Piscopo P, Confaloni A, et al. Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 2014;19:6891–910.
  • Robinson L, Tang E, Taylor J-P. Dementia: timely diagnosis and early intervention. Bmj. 2015;350:1–6.
  • Jin XF, Wu N, Wang L, et al. Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol 2013;33:601–13.
  • Sheinerman KS, Umansky SR. Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Frontiers Cell Neurosci 2013;7:1–10.
  • Atkinson AJJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95.
  • Henley SMD, Bates GP, Tabrizi SJ. Biomarkers for neurodegenerative diseases. Curr Opin Neurol 2005;18:698–705.
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genetics 2008;9:102–14.
  • Etheridge A, Gomes CPC, Pereira RW, et al. The complexity, function, and applications of RNA in circulation. Frontiers Genetics 2013;4:1–8.
  • Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA biomarkers for Alzheimer's disease. PLoS One 2013;8:1–10.
  • Chim SSC, Shing TKF, Hung ECW, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008;54:482–90.
  • Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Frontiers Cell Dev Biol 2014;2:61.
  • Carlsen AL, Schetter AJ, Nielsen CT, et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum 2013;65:1324–34.
  • Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucl Acids Res 2011;39:7223–33.
  • Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 2012;37:460–5.
  • Cortez MA, Bueso-Ramos C, Ferdin J, et al. MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat Rev Clin Oncol 2011;8:467–77.
  • Wang W-T, Chen Y-Q. Circulating miRNAs in cancer: from detection to therapy. J Hematology Oncol 2014;7:1–9.
  • Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Frontiers Mol Neurosci 2013;6:1–13.
  • Duy J, Koehler JW, Honko AN, et al. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics 2015;16:1–9.
  • Burgos KL, Javaherian A, Bomprezzi R, et al. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 2013;19:712–22.
  • Li Y, Kowdley KV. Method for microrna isolation from clinical serum samples. Anal Biochem 2012;431:69–75.
  • Brunet-Vega A, Pericay C, Quìlez ME, et al. Variability in microRNA recovery from plasma: comparison of five commercial kits. Anal Biochem 2015;488:28–35.
  • Etheridge A, Lee I, Hood L, et al. Extracellular microRNA: a new source of biomarkers. Mutation Res 2011;717:85–90.
  • McAlexander MA, Phillips MJ, Witwer KW. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Frontiers Genetics 2013;4:1–8.
  • Moldovan L, Batte KE, Trgovcich J, et al. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014;18:371–90.
  • Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 2013;3:17–36.
  • Schwarzenbach H, Nishida N, Calin GA, et al. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014;11:145–56.
  • Ren A, Dong Y, Tsoi H, et al. Detection of miRNA as non-invasive biomarkers of colorectal cancer. Int J Mol Sci 2015;16:2810–23.
  • Mestdagh P, Hartmann N, Baeriswyl L, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 2014;11:809–15.
  • Liu N, Landreh M, Cao K, et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 2012;482:519–23.
  • Cookson MR. Alpha-synuclein and neuronal cell death. Mol Neurodegener 2009;4:1–14.
  • Talmat-Amar Y, Arribat Y, Redt-Clouet C, et al. Important neuronal toxicity of microtubule-bound tau in vivo in Drosophila. Hum Mol Genetics 2011;20:3738–45.
  • Rauk A. Why is the amyloid beta peptide of Alzheimer's disease neurotoxic? Dalton Trans 2008;10:1273–82.
  • Eacker SM, Dawson TM, Dawson VL. Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 2009;10:837–41.
  • Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011;29:341–5.
  • Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis 2008;14:27–41.
  • Frigerio CS, Lau P, Salta E, et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology 2013;81:2103–06.
  • Müller M, Kuiperij HB, Claassen JA, et al. MicroRNAs in Alzheimer's disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging 2014;35:152–8.
  • Müller M, Jäkel L, Bruinsma IB, et al. MicroRNA-29a is a candidate biomarker for Alzheimer's disease in cell-free cerebrospinal fluid. Mol Neurobiol 2015;53:2894–9.
  • Liu CG, Wang JL, Li L, et al. MicroRNA-384 regulates both amyloid precursor protein and beta-secretase expression and is a potential biomarker for Alzheimer's disease. Int J Mol Med 2014;34:160–6.
  • Liu CG, Wang JL, Li L, et al. MicroRNA-135a and -200b, potential biomarkers for Alzheimer's disease, regulate beta-secretase and amyloid precursor protein. Brain Res 2014;1583:55–64.
  • Zhu Y, Li C, Su A, et al. Quantification of microRNA-210 in the cerebrospinal fluid and serum: implications for Alzheimer's disease. Exp Ther Med 2015;9:1013–17.
  • Kiko T, Nakagawa K, Tsuduki T, et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease. J Alzheimer's Dis 2014;39:253–9.
  • Denk J, Boelmans K, Siegismund C, et al. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer's disease. PLoS One 2015;10:1–18.
  • Galimberti D, Villa C, Fenoglio C, et al. Circulating miRNAs as potential biomarkers in Alzheimer's disease. J Alzheimers Dis 2014;42:1261–7.
  • Gui Y, Liu H, Zhang L, et al. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015;6:37043–53.
  • Alexandrov PN, Dua P, Hill JM, et al. MicroRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). 2012;3:365–73.
  • Burgos K, Malenica I, Metpally R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS One 2014;9:1–20.
  • Geekiyanage H, Jicha GA, Nelson PT, et al. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol 2012;235:491–6.
  • Tan L, Yu JT, Liu QY, et al. Circulating miR-125b as a biomarker of Alzheimer's disease. J Neurol Sci 2014;336:52–6.
  • Dong H, Li J, Huang L, et al. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer's disease. Dis Markers 2015;2015:1–12.
  • Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 2014;20:1–9.
  • Tan L, Yu J-T, Tan M-S, et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer's disease. J Alzheimers Dis 2014;40:1017–27.
  • Bekris LM, Lutz F, Montine TJ, et al. MicroRNA in Alzheimer's disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 2013;18:455–66.
  • Bhatnagar S, Chertkow H, Schipper HM, et al. Increased microRNA-34c abundance in Alzheimer's disease circulating blood plasma. Frontiers Mol Neurosci 2014;7:1–11.
  • Botta-Orfila T, Morató X, Compta Y, et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson's disease. J Neurosci Res 2014;92:1071–77.
  • Vallelunga A, Ragusa M, Di Mauro S, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson's disease and multiple system atrophy. Frontiers Cell Neurosci 2014;8:1–10.
  • Fernandez-Santiago R, Iranzo A, Gaig C, et al. MicroRNA association with synucleinopathy conversion in REM behavior disorder. Ann Neurol 2015;77:895–901.
  • Zhao N, Jin L, Fei G, et al. Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson's disease. Parkinsonism Relat Disorders 2014;20:1177–80.
  • Khoo SK, Petillo D, Kang UJ, et al. Plasma-based circulating microRNA biomarkers for Parkinson's disease. J Parkinson's Dis 2012;2:321–31.
  • Petillo D, Orey S, Choon Tan A, et al. Parkinson's disease-related circulating microRNA biomarkers – a validation study. AIMS Environ Sci 2015;2:7–14.
  • Cardo LF, Coto E, de Mena L, et al. Profile of microRNAs in the plasma of Parkinson's disease patients and healthy controls. J Neurol Germany 2013;260:1420–2.
  • Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's disease. Alzheimer's Dementia 2007;3:186–91.
  • Bird TD. Alzheimer disease overview. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews; Seattle (WA): University of Washington; 1993.
  • Perl DP. Neuropathology of Alzheimer's disease. Mt Sinai J Med 2010;77:32–42.
  • Anoop A, Singh PK, Jacob RS, et al. CSF biomarkers for Alzheimer's disease diagnosis. Int J Alzheimers Dis 2010;2010:1–12.
  • Mulder C, Schoonenboom SNM, Wahlund LO, et al. CSF markers related to pathogenetic mechanisms in Alzheimer's disease. J Neural Transm 2002;109:1491–8.
  • Humpel C. Identifying and validating biomarkers for Alzheimer's disease. Trends Biotechnol 2011;29:26–32.
  • Mattsson N. CSF biomarkers in neurodegenerative diseases. Clin. Chem. Lab. Med. 2011;49:345–352.
  • Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 2008;105:6415–20.
  • Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007;18:297–300.
  • Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci Lett 2009;459:100–4.
  • Leidinger P, Backes C, Deutscher S, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 2013;14:1–16.
  • Toivonen JM, Manzano R, Oliván S, et al. MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 2014;9:1–13.
  • Si H, Sun X, Chen Y, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol 2013;139:223–9.
  • Jung EJ, Santarpia L, Kim J, et al. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 2012;118:2603–14.
  • Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992;256:184–5.
  • Solerte SB, Ferrari E, Cuzzoni G, et al. Decreased release of the angiogenic peptide vascular endothelial growth factor in Alzheimer's disease: recovering effect with insulin and DHEA sulfate. Dementia Geriatric Cogn Disorders 2005;19:1–10.
  • Fasanaro P, Greco S, Lorenzi M, et al. An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem 2009;284:35134–43.
  • Buchman AS, Yu L, Boyle PA, et al. Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology 2016;86:735–41.
  • Muangpaisan W, Mathews A, Hori H, et al. A systematic review of the worldwide prevalence and incidence of Parkinson's disease. J Med Assoc Thail 2011;94:749–55.
  • Dickson DW. Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harbor Perspect Med 2012;2:1–15.
  • Cookson MR. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev Neurosci 2010;11:791–7.
  • Iranzo A, Fernández-Arcos A, Tolosa E, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One 2014;9:1–6.
  • Bredesen DE. Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence. Mol Neurodegener 2009;4:1–10.
  • Shioya M, Obayashi S, Tabunoki H, et al. Aberrant microRNA expression in the brains of neurodegenerative diseases: MiR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010;36:320–30.
  • Roshan R, Shridhar S, Sarangdhar MA, et al. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA 2014;20:1287–97.
  • Johnson R, Zuccato C, Belyaev ND, et al. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol Dis 2008;29:438–45.
  • Pandi G, Nakka VP, Dharap A, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One 2013;8:1––9.
  • Yang D, Li T, Wang YY, et al. miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 2012;125:1673–82.
  • Lau P, Bossers K, Janky R, et al. Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol Med 2013;5:1613–34.
  • Wang G, van der Walt JM, Mayhew G, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genetics 2008;82:283–9.
  • Guidi M, Muiños-Gimeno M, Kagerbauer B, et al. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol 2010;11:95:1–17.
  • Meseguer S, Mudduluru G, Escamilla JM, et al. MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 2011;286:4150–64.
  • Schonrock N, Humphreys DT, Preiss T, et al. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid. J Mol Neurosci 2012;46:324–35.
  • Santa-Maria I, Alaniz ME, Renwick N, et al. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Investigation 2015;125:681–6.
  • Vilardo E, Barbato C, Ciotti M, et al. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem 2010;285:18344–51.
  • Fang M, Wang J, Zhang X, et al. The miR-124 regulates the expression of BACE1/beta-secretase correlated with cell death in Alzheimer's disease. Toxicol Lett 2012;209:94–105.
  • Dickson JR, Kruse C, Montagna DR, et al. Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 2013;127:739–49.
  • Kim J, Inoue K, Ishii J, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 2007;317:1220–24.
  • De Mena L, Coto E, Cardo LF, et al. Analysis of the micro-RNA-133 and PITX3 genes in Parkinson's disease. Am J Med Genetics Part B 2010;153:1234–9.
  • Doxakis E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 2010;285:12726–34.
  • Jovičić A, Roshan R, Moisoi N, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. Ann Intern Med 2013;158:5127–37.
  • Ashraf U, Zhu B, Ye J, et al. MicroRNA-19b-3p modulates Japanese encephalitis virus-mediated inflammation via targeting RNF11. J Virol 2016;90:4780–95.
  • Rostovtseva TK, Tan W, Colombini M. On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 2005;129–42.
  • Pathania M, Torres-Reveron J, Yan L, et al. miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 2012;7:1–10.
  • Remenyi J, van den Bosch MWM, Palygin O, et al. miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity. PLoS One 2013;8:e62509.
  • Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease. Prog Neurobiol 2005;77:128–38.
  • Hebert SS, Horre K, Nicolai L, et al. MicroRNA regulation of Alzheimer's amyloid precursor protein expression. Neurobiol Dis 2009;33:422–8.
  • Nunez-Iglesias J, Liu CC, Morgan TE, et al. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS One 2010;5:1–9.
  • Long, JM, Lahiri, DM. MicroRNA-101 downregulates Alzheimer's amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 2011;404:889–95.
  • Julien C, Tremblay C, Émond V, et al. SIRT1 decrease parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 2009;68:48–58.
  • Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 2009;32:199–206.
  • Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997;388:839–40.
  • Sheinerman KS, Umansky SR. Early detection of neurodegenerative diseases: circulating brain-enriched microRNA. Cell Cycle 2013;12:1–2.
  • Satoh JI, Kino Y, Niida S. MicroRNA-seq data analysis pipeline to identify blood biomarkers for Alzheimer's disease from public data. Biomarker Insights 2015;10:21–31.
  • Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematology 2011;80:193–208.
  • Sheinerman KS, Tsivinsky VG, Abdullah L, et al. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging 2013;5:925–38.
  • Hebert S, Wang W, Zhu Q, et al. A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer's disease, dementia with Lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. J Alzheimer's Dis 2013;35:335–48.
  • Sperling RA, Jack CRJ, Aisen PS. Testing the right target and right drug at the right stage. Sci Translational Med 2011;3:111cm33.
  • Pillai JA, Cummings JL. Clinical trials in predementia stages of Alzheimer disease. Med Clin North Am 2013;97:439–57.
  • Schneider LS, Mangialasche F, Andreasen N, et al. Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014. J Int Med 2014;275:251–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.