886
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits

&
Pages 182-191 | Received 13 Mar 2017, Accepted 02 Sep 2017, Published online: 22 Sep 2017

References

  • Ropper AH, Samuels MA, Klein JP. Adams and Victor's principles of neurology. 10th ed. Boston: McGraw-Hill Education; 2014.
  • Garrard P, Martin NH, Giunti P, et al. Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol. 2008;255(3):398–405.
  • Khan NL, Giunti P, Sweeney MB, et al. Parkinsonism nigrostriatal dysfunction are associated with spinocerebellar ataxia type 6 (SCA6). Mov Disord. 2005;20:1115–1119.
  • Paulson H, Ammache Z. Ataxia and hereditary disorders. Neurol Clin. 2001;19:759–782.
  • Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.
  • Murata Y, Tamaguchi S, Kawakami H, et al. Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol. 1998;55:33–37.
  • Murata Y, Kawakami H, Yamaguchi S, et al. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998;55:1348–1352.
  • Spadaro M, Giunti P, Lulli P, et al. HLA-linked spinocerebellar ataxia: a clinical and genetic study of large Italian kindreds. Acta Neurol Scandinav. 1992;85:257–265.
  • Ito M. Neuropsychological aspects of the cerebellar motor control system. Int J Neurol. 1970;7:162–176.
  • Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44:113–128.
  • Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16:444–447.
  • Leiner HC. Solving the mystery of the human cerebellum. Neuropsychol Rev. 2010;20:229–235.
  • Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. NeuroImage. 2006;32:821–841.
  • Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–1237.
  • Ciesielski KT, Lesnik P, Savoy R, et al. Developmental neural networks in children performing a categorical N-back task. NeuroImage. 2006;33:980–990.
  • Collette F, Van der Linden M, Laureys S, et al. Mapping the updating process: common and specific brain activations across different versions of the running spatial span task. Cortex. 2007;43:146–158.
  • Geier CF, Garver KE, Luna B. Circuitry underlying temporally extended spatial working memory. NeuroImage. 2007;35:904–915.
  • Lie CH, Specht K, Marshall JC, et al. Using fMRI to decompose the neural processes underlying the Wisconsin card sorting test. NeuroImage. 2006;30:1038–1049.
  • Dum R, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann NY Acad Sci. 2002;978:289–301.
  • Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–712.
  • Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–8444.
  • Schmahmann JD. The cerebrocerebellar system: anatomic structures of the cerebellar contribution to cognition and emotion. Int Rev Psychiatry. 2001;13:247–260.
  • Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.
  • Bares M, Lungu O, Lui T, et al. Cerebellum contributes to motor timing and prediction: behavioural and fMRI study in healthy subjects and patients with spinocerebellar ataxia. J of Neurol Sci. Supplement 1 2005;236.
  • Gowen E, Miall RC. Behavioural aspects of cerebellar function in adults with Asperger syndrome. Cerebellum. 2005;4:279–289.
  • Parsons LM, Bower JM, Gao JH, et al. Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learn Memory. 1997;4:49–62.
  • Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–313.
  • Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. Brain. 1982;105:1–28.
  • Holmes G. A form of familial degeneration of the cerebellum. Brain. 1908;30:466–489.
  • Schmahmann JD. Dysmetria of thought: Clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Neurosci. 1998;2:362–371.
  • Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–579.
  • Chedda MG, Sherman JC, Schmahmann J. Neurologic, psychiatric, and cognitive manifestations in cerebellar agenesis. Neurology. 2002;58:A356.
  • Pollack IF, Polinko P, Albright AL, et al. Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery. 1995;37:885–893.
  • Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–1061.
  • Tavano A, Grasso R, Gagliardi C, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–2660.
  • Liszewski CM, O'Hearn E, Leroi I, et al. Cognitive impairment and psychiatric symptoms in 133 patients with diseases associated with cerebellar degeneration. J Neuropsychiatry Clin Neurosci. 2004;16:109–112.
  • Krishnamoorthy A, Craufurd D. Treatment of apathy in Huntington's disease and other movement disorders. Curr Treat Options Neurol. 2011;13:508–519.
  • Harper JW, Heath RG. Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol. 1973;39:285–292.
  • Heath RG, Dempsey CW, Fontana CJ, et al. Cerebellar stimulation: effects on septal region, hippocampus and amygdala of cats and rats. Biol Psychiatry. 1978;13:501–529.
  • Heath RG, Dempesy CW, Fontana CJ, et al. Feedback loop between cerebellum and septal-hippocampal sites: its role in emotion and epilepsy. Biol Psychiatry. 1980;15:541–556.
  • Parvizi J, Joseph J, Press DZ, et al. Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov Disord. 2007;22:798–803.
  • Turner BM, Paradiso S, Marvel CL, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45:1331–1341.
  • Schutter DJLG, Van Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum. 2009;8:28–34.
  • Duchaine BC, Parker H, Nakayama K. Normal recognition of emotion in a prosopagnosic. Perception. 2003;32(7):827–838.
  • Hobson RP, Ouston J, Lee A. What's in a face? The case of autism. Br J Psychol. 1988;79(Pt 4):441–5359.
  • Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia. 2007;45(1):174–194.
  • Barrett LF, Bar M. See it with feeling: affective predictions during object perception. Philos Trans R Soc Lond B Biol Sci. 2009;364(1521):1325–1334.
  • Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol. 2002;12(2):169–177.
  • Kesler-West ML, Andersen AH, Smith CD, et al. Neural substrates of facial emotion processing using fMRI. Brain Res Cogn Brain Res. 2001;11(2):213–226.
  • Vuilleumier P, Driver J. Modulation of visual processing by attention and emotion: windows on causal interactions between human brain regions Phil. Trans R Soc B. 2007;362:837–855.
  • LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–184.
  • Vuilleumier P, Armony JL, Driver J, et al. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron. 2001;30:829–841.
  • Mier D, Lis S, Neuthe K, et al. The involvement of emotion recognition in affective theory of mind. Psychophysiology. 2010;47(6):1028–1039.
  • Fusar-Poli P, Placentino A, Carletti F, et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34(6):418–432.
  • Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34(1):60–65.
  • Abel CG, Stein G, Galarregui M, et al. Social cognition and theory of mind assessment in non-demented patients with isolated cerebellar degeneration. Arq Neuropsiquiatr. 2007;65:304–312.
  • Brunet W, Sarfati Y, Hardy-Baylé MC, et al. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage. 2000;11:157–166.
  • Calarge C, Andreasen NC, O'Leary DS. Visualizing how one brain understands another: a PET study of theory of mind. Am J Psychiatry. 2003;160:1954–1964.
  • Blair J, Cipolotti L. Impaired social response reversal: a case of ‘acquired sociopathy’. Brain. 2000;123:1122–1141.
  • Van-Harskamp NJ, Rudge P, Cipolotti L. Cognitive and social impairments in patients with superficial siderosis. Brain. 2005;128:1082–1092.
  • Sokolovsky N, Cook A, Hunt H, et al. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23:17–29.
  • Ma J, Wu C, Lei J, et al. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med. 2014;7(12):5765–5771.
  • Webb SJ, Sparks BF, Friedman SD, et al. Cerebellar vermal volumes and behavioural correlates in children with autism spectrum disorder. Psychiatry Res. 2009;172:61–67.
  • Fine C, Lumsden J, Blair RJR. Dissociation between ‘theory of mind’ and executive functions in a patient with early left amygdala damage. Brain. 2001;124(Pt 2):287–298.
  • Le Pira F, Zappalà G, Saponara R, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201:53–57.
  • Cooper FE, Grube M, Von Kriegstein K, et al. Distinct critical cerebellar subregions for components of verbal working memory. Neuropsychologia. 2012;50(1):189–197.
  • Schalling E, Hartelius L. Speech in spinocerebellar ataxia. Brain Lang. 2013;127(3):317–322.
  • Bürk K, Globas C, Bösch S, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–211.
  • Wiegner S, Donders J. Performance on the California Verbal Learning Test after traumatic brain injury. J Clin Exp Neuropsychol. 1999;21:159–170.
  • Bürk K, Globas C, Bosch S, et al. Cognitive deficits in spinocerebellar ataxia 2. Brain. 1999;122:769–777.
  • Giuffrida S, Saponara R, Restivo DA, et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999;246:383–388.
  • Brenneis C, Bosch SM, Schocke M, et al. Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport. 2003;6:1799–1802.
  • Roeske S, Filla I, Heim S, et al. Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Mov Disord. 2013;28:1435–1438.
  • Braga-Neto P, Dutra LA, Pedroso JL, et al. Cognitive deficits in Machado-Joseph disease correlate with hypoperfusion of visual system areas. Cerebellum. 2012;11:1037–1044.
  • Lopes TM, D'Abreu A, Franca MC Jr, et al. Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol. 2013;260:2370–2379.
  • Zawacki TM, Grace J, Friedman JH, et al. Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord. 2002;17:1004–1010.
  • Radvany J, Camargo CH, Costa ZM, et al. Machado-Joseph disease of Azorean ancestry in Brazil: the Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the “Catarina” kindred. Arq Neuropsiquiatr. 1993;51:21–30.
  • Maruff P, Tyler P, Burt T, et al. Cognitive deficits in Machado-Joseph disease. Ann Neurol. 1996;40:421–427.
  • Kawai Y, Takeda A, Abe Y, et al. Cognitive impairments in Machado-Joseph disease. Arch Neurol. 2004;61:1757–1760.
  • Klinke I, Minnerop M, Schmitz-Hubsch T, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9:433–442.
  • Suenaga M, Kawai Y, Watanabe H, et al. Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2008;79(5):496–499.
  • Ishikawa K, Watanabe M, Yoshizawa K, et al. Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry. 1999;67:86–89.
  • Ishikawa K, Owada K, Ishida K, et al. Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells. Neurology. 2001;56:1753–1756.
  • Cooper FE, Grube M, Elsegood KJ, et al. The contribution of the cerebellum to cognition in spinocerebellar ataxia type 6. Behav Neurol. 2010;23:3–15.
  • D'Agata F, Caroppo P, Baudino B, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10:600–610.
  • Maas RP, van Gaalen J, Klockgether T, et al. The preclinical stage of spinocerebellar ataxias. Neurology. 2015;85(1):96–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.