313
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Functional amyloids: interrelationship with other amyloids and therapeutic assessment to treat neurodegenerative diseases

&
Pages 449-463 | Received 24 Dec 2016, Accepted 21 Oct 2017, Published online: 16 Nov 2017

References

  • Maurer-Stroh S, Debulpaep M, Kuemmerer N, et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Meth. 2010;7(3):237–242.
  • Usnarska-Zubkiewicz L, Hołojda J, Kuliczkowski K. Al amyloidosis (Amyloidosis Antibody Light). Part 1. Definition, classification, amyloid structure, development and etiopathogenesis of AL amyloidosis. Clin Exp Med. 2011;20(5):647–652.
  • Maury CP. The emerging concept of functional amyloid. J Intern Med. 2009;265(3):329–334.
  • Fowler DM, Koulov AV, Balch WE, et al. Functional amyloid–from bacteria to humans. Trends Biochem Sci. 2007;32(5):217–224.
  • Jiang Z, Lee JC. Lysophospholipid-containing membranes modulate the fibril formation of the repeat domain of a human functional amyloid, pmel17. J Mol Biol. 2014;426(24):4074–4086.
  • Syed AK, Boles BR. Fold modulating function: bacterial toxins to functional amyloids. Front Microbiol. 2014;5:401.
  • Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Micro. 2013;11(4):227–238.
  • Lai CS, Chang CJ, Lu CC, et al. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed J. 2014;37(5):259.
  • Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158–263ra158.
  • Oppong GO, Rapsinski GJ, Tursi SA, et al. Biofilm-associated bacterial amyloids dampen inflammation in the gut: oral treatment with curli fibres reduces the severity of hapten-induced colitis in mice. NPJ Biofilms Microb. 2015;1:15019.
  • Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD). Front Aging Neurosci. 2015;7:9.
  • Hartz AM, Bauer B, Soldner EL, et al. Amyloid-β contributes to blood–brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke. 2012;43(2):514–523.
  • Tycko R. Solid state NMR studies of amyloid fibril structure. Annu Rev Phys Chem. 2011;62:279.
  • Wattmo C, Minthon L, Wallin ÅK. Mild versus moderate stages of Alzheimer's disease: three-year outcomes in a routine clinical setting of cholinesterase inhibitor therapy. Alz Res Therapy. 2016;8(1):1.
  • Ben Halima SB, Mishra S, Raja KM, et al. Specific inhibition of β-secretase processing of the Alzheimer disease amyloid precursor protein. Cell Rep. 2016;14(9):2127–2141.
  • Volpicelli-Daley LA, Luk KC, Patel TP, et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72(1):57–71.
  • Trepte P, Strempel N, Wanker EE. Spontaneous self-assembly of pathogenic huntingtin exon 1 protein into amyloid structures. Essays Biochem. 2014;56:167–180.
  • Rapsinski GJ, Wynosky-Dolfi MA, Oppong GO, et al. Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli. Infect Immun. 2015;83(2):693–701.
  • Cao B, Zhao Y, Kou Y, et al. Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci USA. 2014;111(50):E5439–E5444.
  • Shu Q, Crick SL, Pinkner JS, et al. The E. coli CsgB nucleator of curli assembles to β-sheet oligomers that alter the CsgA fibrillization mechanism. Proc Natl Acad Sci U S A. 2012;109(17):6502–6507.
  • Ekkers DM, Claessen D, Galli F, et al. Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl Microbiol Biotech. 2014;98(10):4491–4501.
  • Dueholm MS, Søndergaard MT, Nilsson M, et al. Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiologyopen. 2013;2(3):365–382.
  • Marcoleta A, Marín M, Mercado G, et al. Microcin E492 amyloid formation is retarded by posttranslational modification. J Bacteriol. 2013;195(17):3995–4004.
  • Ramsugit S, Pillay M. Pili of Mycobacterium tuberculosis: current knowledge and future prospects. Arch Microbiol. 2015;197(6):737–744.
  • Saupe SJ.. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Sem Cell Develop Biol. 2011;22(5):460–468.
  • Todorova TT, Tsankova GS, Ermenlieva NM. Yeast prion protein Ure2p – a useful model for human prion diseases. J IMAB. 2015;21(1):747–751.
  • Bengtson MH, Joazeiro CA. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature. 2010;467(7314):470–473.
  • Ren Q, Kwan AH, Sunde M. Two forms and two faces, multiple states and multiple uses: Properties and applications of the self‐assembling fungal hydrophobins. Peptide Sci. 2013;100(6):601–612.
  • Macindoe I, Kwan AH, Ren Q, et al. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc Natl Acad Sci U S A. 2012;109(14):E804–E811.
  • Pham CL, Kwan AH, Sunde M. Functional amyloid: widespread in Nature, diverse in purpose. Essays Biochem. 2014;56:207–219.
  • Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol. 2015;11(5):309–315.
  • McGlinchey RP, Shewmaker F, McPhie P, et al. The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proc Natl Acad Sci. 2009;106(33):13731–13736.
  • McGlinchey RP, Shewmaker F, Hu KN, et al. Repeat domains of melanosome matrix protein Pmel17 orthologs form amyloid fibrils at the acidic melanosomal pH. J Biol Chem. 2011;286(10):8385–8393.
  • Wickner RB, Shewmaker F, Edskes H, et al. Prion amyloid structure explains templating: how proteins can be genes. FEMS Yeast Res. 2010;10(8):980–991.
  • Perl DP. Neuropathology of Alzheimer's disease. Mt Sinai J Med. 2010;77(1):32–42.
  • Shewmaker F, McGlinchey RP, Wickner RB. Structural insights into functional and pathological amyloid. J Biol Chem. 2011;286(19):16533–16540.
  • Shewmaker F, McGlinchey RP, Thurber KR, et al. The functional curli amyloid is not based on in-register parallel β-sheet structure. J Biol Chem. 2009;284(37):25065–25076.
  • Gendoo DM, Harrison PM. Origins and evolution of the HET-s prion-forming protein: searching for other amyloid-forming solenoids. PloS One. 2011;6(11):e27342.
  • Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15(6):384–396.
  • Wasmer C, Lange A, Van Melckebeke H, et al. Amyloid fibrils of the HET-s (218–289) prion form a β solenoid with a triangular hydrophobic core. Science. 2008;319(5869):1523–1526.
  • Maji SK, Perrin MH, Sawaya MR, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009;325(5938):328–332.
  • Bjorndahl TC, Zhou GP, Liu X, et al. Detailed biophysical characterization of the acid-induced PrPc to PrPβ conversion process. Biochemistry. 2011;50(7):1162–1173.
  • Van Melckebeke, Wasmer C, Lange A, et al. Atomic-resolution three-dimensional structure of HET-s (218− 289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc. 2010;132(39):13765–13775.
  • Seuring C, Greenwald J, Wasmer C, et al. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol. 2012;10(12):e1001451.
  • Li J, McQuade T, Siemer AB, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012;150(2):339–350.
  • Duque E, de la Torre J, Bernal P, et al. Identification of reciprocal adhesion genes in pathogenic and non‐pathogenic Pseudomonas. Environ Microbiol. 2013;15(1):36–48.
  • Willey JM, Sherwood LM, Woolverton CJ. Prescott, Harley, and Klein's microbiology. 7th ed. New York (NY): McGraw Hill Higher Education; 2008. Chapter 3, Prokaryotic Cell Structure and Function; p. 66–70.
  • Blanco LP, Evans ML, Smith DR, et al. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol. 2012;20(2):66–73.
  • Evans ML, Chorell E, Taylor JD, et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell. 2015;57(3):445–455.
  • Taylor JD, Zhou Y, Salgado PS, et al. Atomic resolution insights into curli fiber biogenesis. Structure. 2011;19(9):1307–1316.
  • Taylor JD, Matthews SJ. New insight into the molecular control of bacterial functional amyloids. Front Cell Infect Microbiol. 2015;5:33.
  • Duong A, Capstick DS, Di Berardo C, et al. Aerial development in Streptomyces coelicolor requires sortase activity. Mol Microbiol. 2012;83(5):992–1005.
  • Sawyer EB, Claessen D, Haas M, et al. The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS One. 2011;6(4):e18839.
  • Bokhove M, Claessen D, de Jong W, et al. Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. J Struct Biol. 2013;184(2):301–309.
  • Roychaudhuri R, Yang M, Hoshi MM, et al. Amyloid β-protein assembly and Alzheimer disease. J Biol Chem. 2009;284(8):4749–4753.
  • Tay WM, Huang D, Rosenberry TL, et al. The Alzheimer's amyloid-β (1–42) peptide forms off-pathway oligomers and fibrils that are distinguished structurally by intermolecular organization. J Mol Biol. 2013;425(14):2494–2508.
  • Gautam V, D'Avanzo C, Berezovska O, et al. Synaptotagmins interact with APP and promote Aβ generation. Mol Neurodegeneration. 2015;10(1):1.
  • Gröger A, Kolb R, Schäfer R, et al. Dopamine reduction in the substantia nigra of Parkinson's disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PloS One. 2014;9(1):e84081.
  • Cortes CJ, La Spada AR. The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy. Drug Discov Today. 2014;19(7):963–971.
  • Singh J, Udgaonkar JB. Molecular mechanism of the misfolding and oligomerization of the prion protein: current understanding and its implications. Biochemistry. 2015;54(29):4431–4442.
  • Biasini E, Turnbaugh JA, Unterberger U, et al. Prion protein at the crossroads of physiology and disease. Trends Neurosci. 2012;35(2):92–103.
  • Baiesi M, Seno F, Trovato A. Fibril elongation mechanisms of HET‐s prion‐forming domain: Topological evidence for growth polarity. Proteins. 2011;79(11):3067–3081.
  • Zhou Y, Blanco LP, Smith DR, et al. Amyloid proteins: Methods and protocols. 2nd ed. New York (NY): Humana Press; 2012. Chapter 21, Bacterial Amyloids; p. 303-320. (Methods in Molecular Biology; 849).
  • Nishimori JH, Newman TN, Oppong GO, et al. Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect Immun. 2012;80(12):4398–4408.
  • Harry GJ. Microglia during development and aging. Pharmacol Ther. 2013;139(3):313–326.
  • Tükel Ç, Wilson RP, Nishimori JH, et al. Responses to amyloids of microbial and host origin are mediated through toll-like receptor 2. Cell Host Microbe. 2009;6(1):45–53.
  • Zhang J, Ke KF, Liu Z, et al. Th17 Cell-mediated neuroinflammation is involved in neurodegeneration of Aβ 1-42-Induced Alzheimer's disease model rats. PLoS One. 2013;8(10):e75786.
  • Thackray AM, McKenzie AN, Klein MA, et al. Accelerated prion disease in the absence of interleukin-10. J Virol. 2004;78(24):13697–13707.
  • Hamilton JA, Whitty G, White AR, et al. Alzheimer's disease amyloid beta and prion protein amyloidogenic peptides promote macrophage survival, DNA synthesis and enhanced proliferative response to CSF-1 (M-CSF). Brain Res. 2002;940(1):49–54.
  • Nordstedt C, Näslund J, Tjernberg LO, et al. The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J Biol Chem. 1994;269(49):30773–30776.
  • Sitaras C, Naghavi M, Herrington MB. Sodium dodecyl sulfate–agarose gel electrophoresis for the detection and isolation of amyloid curli fibers. Anal Biochem. 2011;408(2):328–331.
  • Jendroska K, Heinzel FP, Torchia M, et al. Proteinase‐resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology. 1991;41(9):1482–1490.
  • Buxbaum JN, Linke RP. A molecular history of the amyloidoses. J Mol Biol. 2012;421(2):142–159.
  • Sabate R, Rodriguez-Santiago L, Sodupe M, et al. Thioflavin-T excimer formation upon interaction with amyloid fibers. Chem Commun. 2013;49(51):5745–5747.
  • Kitani T, Kami D, Kawasaki T, et al. Direct human mitochondrial transfer: a novel concept based on the endosymbiotic theory. Transplant Proc. 2014;46(4):1233–1236.
  • Via A, Uyar B, Brun C, et al. How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci. 2015;40(1):36–48.
  • Zhao Y, Dua P, Lukiw WJ. Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer's disease (AD). J Alzheimers Dis Parkinsonism. 2015;5(1):177.
  • Mormino EC, Smiljic A, Hayenga AO, et al. Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex. 2011;21:2399–2407.
  • Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid. 2010;17(3-4):101–104.
  • Perfetto F, Moggi-Pignone A, Livi R, et al. Systemic amyloidosis: a challenge for the rheumatologist. Nat Rev Rheumatol. 2010;6(7):417–429.
  • Shikama Y, Kitazawa JI, Yagihashi N, et al. Localized amyloidosis at the site of repeated insulin injection in a diabetic patient. Intern Med. 2010;49(5):397–401.
  • Sattianayagam PT, Hawkins PN, Gillmore JD. Systemic amyloidosis and the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2009;6(10):608–617.
  • Madsen LG, Gimsing P, Schiødt FV. Primary (AL) amyloidosis with gastrointestinal involvement. Scandinavian J Gastroenterol. 2009;44(6):708–711.
  • Tai LM, Holloway KA, Male DK, et al. Amyloid‐β‐induced occludin down‐regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation. J Cell Mol Med. 2010;14(5):1101–1112.
  • Tsao N, Hsu HP, Wu CM, et al. Tumour necrosis factor-α causes an increase in blood-brain barrier permeability during sepsis. J Med Microbiol. 2001;50(9):812–821.
  • Lopez-Ramirez MA, Fischer R, Torres-Badillo CC, et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J Immunol. 2012;189(6):3130–3139.
  • Zipser BD, Johanson CE, Gonzalez L, et al. Microvascular injury and blood–brain barrier leakage in Alzheimer's disease. Neurobiol Aging. 2007;28(7):977–986.
  • Matsumoto Y, Yanase D, Noguchi-Shinohara M, et al. Blood-brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-β protein transport across the blood-brain barrier in Alzheimer's disease. Dement Geriatr Cogn Disord. 2007;23(4):241–245.
  • Lauer D, Reichenbach A, Birkenmeier G. α2-Macroglobulin-mediated degradation of amyloid β1–42: a mechanism to enhance amyloid β catabolism. Exper Neurol. 2001;167(2):385–392.
  • Liu S, Liu Y, Hao W, et al. TLR2 is a primary receptor for Alzheimer's amyloid β peptide to trigger neuroinflammatory activation. J Immunol. 2012;188(3):1098–1107.
  • Schwartz K, Boles BR. Microbial amyloids–functions and interactions within the host. Curr Opin Microbiol. 2013;16(1):93–99.
  • Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–934.
  • Melchior B, Garcia AE, Hsiung BK, et al. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer's disease. ASN Neuro. 2010;2(3):AN20100010.
  • Yaghmoor F, Noorsaeed A, Alsaggaf S, et al. The role of TREM2 in Alzheimer's disease and other neurological disorders. J Alzheimers Dis Parkinsonism. 2014;04(5):
  • Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer's disease (AD). J Nat Sci. 2015;1(7):e:138.
  • Zabel MD, Avery AC. Prions—Not Your Immunologist's Pathogen. PLoS Pathog. 2015;11(2):e1004624.
  • Bradford BM, Mabbott NA. Prion disease and the innate immune system. Viruses. 2012;4(12):3389–3419.
  • Lunnon K, Teeling JL, Tutt AL, et al. Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol. 2011;186(12):7215–7224.
  • Tu J, Chen B, Yang L, et al. Amyloid-β activates microglia and regulates protein expression in a manner similar to prions. J Mol Neurosci. 2015;56(2):509–518.
  • Zhao X, Yang J. Amyloid-β peptide is a substrate of the human 20S proteasome. ACS Chem Neurosci. 2010;1(10):655–660.
  • Nonaka T, Hasegawa M. A cellular model to monitor proteasome dysfunction by α-synuclein. Biochemistry. 2009;48(33):8014–8022.
  • Hipp MS, Patel CN, Bersuker K, et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J Cell Biol. 2012;196(5):573–587.
  • Trippier PC, Zhao KT, Fox SG, et al. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis. ACS Chem Neurosci. 2014;5(9):823–829.
  • Kajava AV, Klopffleisch K, Chen S, et al. Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s. Sci Rep. 2014;4:7436.
  • Daskalov A, Dyrka W, Saupe SJ. Theme and variations: evolutionary diversification of the HET-s functional amyloid motif. Sci Rep. 2015;5:
  • Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure. 2010;18(10):1244–1260.
  • Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochem Int. 2013;62(5):540–555.
  • Selkoe DJ. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid β‐protein. Ann N Y Acad Sci. 2000;924(1):17–25.
  • Hane F. Are amyloid fibrils molecular spandrels? FEBS Lett. 2013;587(22):3617–3619.
  • Murado MA, Vázquez JA, Rial D, et al. Dose–response modelling with two agents: application to the bioassay of oil and shoreline cleaning agents. J Hazard Mater. 2011;185(2):807–817.
  • Vázquez JA, Durán A, Rodríguez-Amado I, et al. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling. Microb Cell Fact. 2011;10(1):1.
  • Rial D, Vázquez JA, Murado MA. Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for toxicological assessment. Appl Microbiol Biotechnol. 2011;90(3):1095–1109.
  • Vázquez JA. Modeling of chemical inhibition from amyloid protein aggregation kinetics. BMC Pharmacol Toxicol. 2014;15(1):1.
  • Vo T, Carulli D, Ehlert EM, et al. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci. 2013;56:186–200.
  • Wang Y, Xing J, Xu Y, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015;48(04):488–515.
  • Portelius E, Brinkmalm G, Tran A, et al. Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid. Experimental Neurology. 2010;223(2):351–358.
  • Romero K, Ito K, Rogers JA, et al. The future is now: Model‐based clinical trial design for Alzheimer's disease. Clin Pharmacol Ther. 2015;97(3):210–214.
  • Fang H, Wang PF, Zhou Y, et al. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation. 2013;10(1):1.
  • Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease. PLoS One. 2012;7(3):e32616.
  • Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11(1):1.
  • Michelucci A, Heurtaux T, Grandbarbe L, et al. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-β. J Neuroimmunol. 2009;210(1):3–12.
  • Balce DR, Li B, Allan ER, et al. Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood. 2011;118(15):4199–4208.
  • Liu S, Wang X, Li Y, et al. Necroptosis mediates TNF-induced toxicity of hippocampal neurons. Biomed Res Int. 2014;2014:
  • Vandenabeele P, Galluzzi L, Berghe TV, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11(10):700–714.
  • Galluzzi L, Vanden Berghe T, Vanlangenakker N, et al. Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol. 2011;289:1–35.
  • He S, Liang Y, Shao F, et al. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway. Proc Natl Acad Sci U S A. 2011;108(50):20054–20059.
  • Re DB, Le Verche V, Yu C, et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron. 2014;81(5):1001–1008.
  • Parry TL, Melehani JH, Ranek MJ, et al. Functional amyloid signaling via the inflammasome, necrosome, and signalosome: new therapeutic targets in heart failure. Front Cardiovasc Med. 2015;2:
  • Ather JL, Ckless K, Martin R, et al. Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol. 2011;187(1):64–73.
  • Hafner-Bratkovič I, Benčina M, Fitzgerald KA, et al. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell Mol Life Sci. 2012;69(24):4215–4228.
  • Munoz L, Ranaivo HR, Roy SM, et al. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model. J Neuroinflammation. 2007;4(1):21.
  • Evans CG, Wisén S, Gestwicki JE. Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1–42) aggregation in vitro. J Biol Chem. 2006;281(44):33182–33191.
  • Flower TR, Chesnokova LS, Froelich CA, et al. Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J Mol Biol. 2005;351(5):1081–1100.
  • Daturpalli S, Waudby CA, Meehan S, et al. Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J Mol Biol. 2013;425(22):4614–4628.
  • Fernandez-Funez P, Casas-Tinto S, Zhang Y, et al. In vivo generation of neurotoxic prion protein: role for hsp70 in accumulation of misfolded isoforms. PLoS Genet. 2009;5(6):e1000507.
  • Sawiris GP, Becker KG, Elliott EJ, et al. Molecular analysis of bovine spongiform encephalopathy infection by cDNA arrays. J Gen Virol. 2007;88(4):1356–1362.
  • Kumar N, Gaur D, Gupta A, et al. Hsp90-associated immunophilin homolog Cpr7 is required for the mitotic stability of [URE3] prion in Saccharomyces cerevisiae. PLoS Genet. 2015;11(10):e1005567.
  • Seo H, Sonntag KC, Kim W, et al. Proteasome activator enhances survival of Huntington's disease neuronal model cells. PloS One. 2007;2(2):e238.
  • Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–184.
  • Svensson E, Horváth‐Puhó E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson's disease. Ann Neurol. 2015;78(4):522–529.
  • Stokholm MG, Danielsen EH, Hamilton‐Dutoit SJ, et al. Pathological α‐synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79(6):940–949.
  • Rees K, Stowe R, Patel S, et al. Helicobacter pylori eradication for Parkinson's disease. Cochrane Libr. 2011;(11):CD008453. doi:10.1002/14651858.CD008453.pub2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.