462
Views
13
CrossRef citations to date
0
Altmetric
Review Article

Targeting crosstalk between Nuclear factor (erythroid-derived 2)-like 2 and Nuclear factor kappa beta pathway by Nrf2 activator dimethyl fumarate in epileptogenesis

, &
Pages 987-994 | Received 18 Sep 2017, Accepted 09 Feb 2018, Published online: 25 Feb 2018

References

  • Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE Official Report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482. doi:10.1111/epi.12550.
  • Behr C, Goltzene MA, Kosmalski G, et al. Epidemiology of epilepsy. Rev Neurol (Paris). 2016;172:27–36. doi:10.1016/J.NEUROL.2015.11.003.
  • Bromfield EB, Cavazos JE. I. J.I.S.J. Chapter 1. Basic mechanisms underlying seizures and epilepsy. In: An introduction to epilepsy. West Hartford (CT): American Epilepsy Society; 2006. p. 1–26.
  • Maguire J. Epileptogenesis: More than just the latent period. Epilepsy Curr. 2016;16:31–33. doi:10.5698/1535-7597-16.1.31.
  • Pauletti A, Terrone ÃG, Shekh-ahmad ÃT, et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 2017;140:1885–1899. doi:10.1093/brain/awx117.
  • Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001;42(Suppl 3):8–12.
  • Martinc B, Grabnar I, Vovk T. The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol. 2012;10:328–343. doi:10.2174/157015912804143504.
  • Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:31–40. doi:10.1038/nrneurol.2010.178.
  • Cuadrado A. NRF2 in neurodegenerative diseases. Curr Opin Toxicol. 2016;1:46–53. doi:10.1016/J.COTOX.2016.09.004.
  • Guo Y, Zhang Y, Wen D, et al. The modest impact of transcription factor Nrf2 on the course of disease in an ALS animal model. Lab Invest. 2013;93:825–833. doi:10.1038/labinvest.2013.73.
  • Sandberg M, Patil J, D'Angelo B, et al. NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology. 2014;79:298–306. doi:10.1016/j.neuropharm.2013.11.004.
  • Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. 2015;43:621–626. doi:10.1042/BST20150014.
  • Cuadrado A, Martín-Moldes Z, Ye J, et al. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem. 2014;289:15244–15258. doi:10.1074/jbc.M113.540633.
  • Albrecht P, Bouchachia I, Zimmermann C, et al. Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation. 2012;9:163. doi:10.1186/1742-2094-9-163.
  • Schmidt MM, Dringen R. Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int. 2010;57:460–467. doi:10.1016/j.neuint.2010.01.006.
  • Kunze R, Urrutia A, Hoffmann A, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity. Exp Neurol. 2015;266:99–111. doi:10.1016/j.expneurol.2015.02.022.
  • Longo D, Fauci A, Kasper D, et al. Chapter 193, Seizures and epilepsy. In: Longo D, Fauci A, Kasper D, et al. , editors. Harrison's Manual of Internal Medicine. 18th ed. New York (NY): McGraw-Hill Companies, Inc.; 2013. p. 1199–1212.
  • Mazzuferi M, Kumar G, van Eyll J, et al. Nrf2 defense pathway: experimental evidence for its protective role in epilepsy. Ann Neurol. 2013;74:560–568. doi:10.1002/ana.23940.
  • Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, et al. Overview of Nrf2 as therapeutic target in epilepsy. Int J Mol Sci. 2015;16:18348–18367. doi:10.3390/ijms160818348.
  • Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2:492–516. doi:10.1007/s12975-011-0125-x.
  • Dumuis A, Sebben M, Haynes L, et al. NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature. 1988;336:68–70. doi:10.1038/336068a0.
  • Mertsch K, Blasig I, Grune T. 4-Hydroxynonenal impairs the permeability of an in vitro rat blood–brain barrier. Neuroscience Letters. 2001;314:135–138. doi:10.1016/S0304-3940(01)02299-6.
  • Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014; 2014:1–19. doi:10.1155/2014/761264.
  • Uttara B, Singh AV, Zamboni P, et al. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74. doi:10.2174/157015909787602823.
  • Braughler JM, Hall ED. Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med. 1989;6:289–301. doi:10.1016/0891-5849(89)90056-7.
  • Oh SM, Betz AL. Interaction between free radicals and excitatory amino acids in the formation of ischemic brain edema in rats. Stroke. 1991;22:915–921.
  • Waldbaum S, Patel M. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr. 2010;42:449–455. doi:10.1007/s10863-010-9320-9.
  • Wang W, Wang WP, Zhang GL, et al. Activation of Nrf2-ARE signal pathway in hippocampus of amygdala kindling rats. Neurosci Lett. 2013;543:58–63. doi:10.1016/j.neulet.2013.03.038.
  • Ramsey CP, Glass CA, Montgomery MB, et al. Expression of Nrf2 in neurodegenrative disease. J Neuropathol Exp Neurol. NIHpublic access. 2008;66:75–85.
  • Ellrichmann G, Petrasch-Parwez E, Lee DH, et al. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of huntington's disease. PLoS One. 2011;6:1–11. doi:10.1371/journal.pone.0016172.
  • Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev. 2010;62:668–700. doi:10.1124/pr.110.003046.668.
  • Sun Z, Wu T, Zhao F, et al. KPNA6 (Importin a7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol Cell Biol. 2011;31:1800–1811. doi:10.1128/MCB.05036-11.
  • Linker RA, Lee DH, Ryan S, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134:678–692. doi:10.1093/brain/awq386.
  • Becher B, Prat A, Antel JP. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia. 2000;29:293–304.
  • Walker L, Sills GJ. Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr. 2012;12:8–12. doi:10.5698/1535-7511-12.1.8.
  • Mattson MP. NF-kB in the survival and plasticity of neurons. Neurochem Res. 2005;30:883–893. doi:10.1007/s11064-005-6961-x.
  • O'Mahony A, Raber J, Montano M, et al. NF-κB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity. Mol Cell Biol. 2006;26:7283–7298. doi:10.1128/MCB.00510-06.
  • Latimer M, Ernst MK, Dunn LL, et al. The N-terminal domain of I kappa B alpha masks the nuclear localization signal of p50 and c-Rel homodimers. Mol Cell Biol. 1998;18:2640–2649. doi:10.1128/MCB.18.5.2640.
  • Lubin FD, Ren Y, Xu X, et al. Nuclear factor-κB regulates seizure threshold and gene transcription following convulsant stimulation. J Neurochem. 2007;103:1381–1395. doi:10.1111/j.1471-4159.2007.04863.x.
  • Yu N, Di Q, Liu H, et al. Nuclear factor-kappa B activity regulates brain expression of P-glycoprotein in the kainic acid-induced seizure rats. Mediators Inflamm. 2011;670613. doi:10.1155/2011/670613.
  • Rong Y, Baudry M. Seizure activity results in a rapid induction of Nuclear factor-κB in adult but not juvenile rat limbic structures. J Neurochem. 2002;67:662–668. doi:10.1046/j.1471-4159.1996.67020662.x.
  • Zhang H, Chu X, Fu T, et al. Inhibitory effect of interleukin-1β antibody for NLRP3 inflammasome on epilepsy rat model. Int J Clin Exp Pathol. 2017;10:1847–1853.
  • Zhang JM, Hong Y, Yan W, et al. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin. 2010;31:1421–1430. doi:10.1038/aps.2010.101.
  • Pan H, Wang H, Wang X, et al. The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012;2012:1–9. doi:10.1155/2012/217580.
  • Thimmulappa RK, Lee H, Rangasamy T, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006;116:984–995. doi:10.1172/JCI25790.984.
  • Soares MP, Seldon MP, Gregoire IP, et al. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol. 2004;172:3553–3563. doi:10.4049/JIMMUNOL.172.6.3553.
  • Kim JE, You DJ, Lee C, et al. Suppression of NF-κB signaling by Keap1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cell Signal. 2010;22:1645–1654. doi:10.1016/j.cellsig.2010.06.004.
  • Liu GH, Qu J, Shen X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta - Mol Cell Res. 2008;1783:713–727. doi:10.1016/j.bbamcr.2008.01.002.
  • Kraft AD, Lee JM, Johnson DA, et al. Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J Neurochem. 2006;98:1852–1865. doi:10.1111/j.1471-4159.2006.04019.x.
  • Xu C, Shen G, Chen C, et al. Suppression of NF-kB and NF-kB-regulated gene expression by sulforaphane and PEITC through IkBa, IKK pathway in human prostate cancer PC-3 cells. Oncogene. 2005;24:4486–4495. doi:10.1038/sj.onc.1208656.
  • Keum Y-S, Owuor ED, Kim B-R, et al. Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC). Pharm Res. 2003;20:1351–1356.
  • Loewe R, Holnthoner W, Groger M, et al. Dimethylfumarate inhibits TNF-induced nuclear entry of NF- B/p65 in human endothelial cells. J Immunol. 2002;168:4781–4787. doi:10.4049/jimmunol.168.9.4781.
  • Kastrati I, Siklos MA, Calderon-gierszal EL, et al. Dimethyl fumarate inhibits the nuclear factor κB pathway in breast cancer cells by covalent modification of p65. J Biol Chem. 2015;291:3639–3647. doi:10.1074/jbc.M115.679704.
  • Vego H, Sand KL, Høglund RA, et al. Monomethyl fumarate augments NK cell lysis of tumor cells through degranulation and the upregulation of NKp46 and CD107a. Cell Mol Immunol. 2016;13:57–64. doi:10.1038/cmi.2014.114.
  • Ockenfels HM, Schultewolter T, Ockenfels G, et al. The antipsoriatic agent dimethylfumarate immunomodulates T-cell cytokine secretion and inhibits cytokines of the psoriatic cytokine network. Br J Dermatol. 1998;139:390–395. doi:10.1046/j.1365-2133.1998.02400.x.
  • Al-Jaderi Z, Maghazachi AA. Utilization of dimethyl fumarate and related molecules for treatment of multiple sclerosis, cancer, and other diseases. Front Immunol. 2016;7:1–8. doi:10.3389/fimmu.2016.00278.
  • Calkins MJ, Johnson DA, Townsend JA, et al. The Nrf2 /ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal. 2009;11:497–508. doi:10.1089/ars.2008.2242.
  • Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci USA. 2016;113:4777–4782. doi:10.1073/pnas.1603907113.
  • Chen H, Assmann JC, Krenz A, et al. Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate's protective effect in EAE. J Clin Invest. 2014;124:2188–2192. doi:10.1172/JCI72151.
  • Jo C, Gundemir S, Pritchard S, et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun. 2014;5:3496. doi:10.1038/ncomms4496.
  • Ameen D, Michniak-Kohn B. Transdermal delivery of dimethyl fumarate for Alzheimer's disease: effect of penetration enhancers. Int J Pharm. 2017;529:465–473. doi:10.1016/j.ijpharm.2017.07.031.
  • Ahuja M, Ammal Kaidery N, Yang L, et al. Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson's-like disease. J Neurosci. 2016;36:6332–6351. doi:10.1523/JNEUROSCI.0426-16.2016.
  • de Paula CZ, Gonçalves BDC, Vieira LB. An overview of potential targets for treating amyotrophic lateral sclerosis and Huntington's disease. Biomed Res Int. 2015;2015:198612. doi:10.1155/2015/198612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.