254
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Role of S-100β in stroke

, &
Pages 1180-1187 | Received 16 Nov 2017, Accepted 21 May 2018, Published online: 08 Jun 2018

References

  • Persson L, Hardemark HG, Gustafsson J, et al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke. 1987;18(5):911–918.
  • Abraha HD, Butterworth RJ, Bath PM, et al. Serum S-100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem. 1997;34(Pt 4):366–370.
  • Butterworth RJ, Sherwood RA, Bath PM. Serum S-100 protein in acute stroke. Stroke. 1998;29(3):730.
  • Pettigrew LC, Kasner SE, Gorman M, et al. Effect of arundic acid on serum S-100β in ischemic stroke. J Neurol Sci. 2006;251(1–2):57–61.
  • Stroick M, Fatar M, Ragoschke-Schumm A, et al. Protein S-100B – a prognostic marker for cerebral damage. Curr Med Chem. 2006;13(25):3053–3060.
  • Kruse A, Cesarini KG, Bach FW, et al. Increases of neuron-specific enolase, S-100 protein, creatine kinase and creatine kinase BB isoenzyme in CSF following intraventricular catheter implantation. Acta Neurochir (Wien). 1991;110(3–4):106–109.
  • Fassbender K, Schmidt R, Schreiner A, et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci. 1997;148(1):101–105.
  • Stranjalis G, Korfias S, Psachoulia C, et al. Serum S-100B as an indicator of early postoperative deterioration after meningioma surgery. Clin Chem. 2005;51(1):202–207.
  • Mussack T, Hauser C, Klauss V, et al. Serum S-100B protein levels during and after successful carotid artery stenting or carotid endarterectomy. J Endovasc Ther. 2006;13(1):39–46.
  • Tanaka Y, Koizumi C, Marumo T, et al. Serum S100B is a useful surrogate marker for long-term outcomes in photochemically-induced thrombotic stroke rat models. Life Sci. 2007;81(8):657–663.
  • Herrmann M, Vos P, Wunderlich MT, et al. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31(11):2670–2677.
  • Kanner AA, Marchi N, Fazio V, et al. Serum S100β: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003;97(11):2806–2813.
  • Cocchia D, Michetti F. S-100 antigen in satellite cells of the adrenal medulla and the superior cervical ganglion of the rat. An immunochemical and immunocytochemical study. Cell Tissue Res. 1981;215(1):103–112.
  • Cocchia D, Polak JM, Terenghi G, et al. Localization of S-100 protein in Muller cells of the retina–2. Electron microscopical immunocytochemistry. Invest Ophthalmol Vis Sci. 1983;24(7):980–984.
  • Ridinger K, Ilg EC, Niggli FK, et al. Clustered organization of S100 genes in human and mouse. Biochim Biophys Acta. 1998;1448(2):254–263.
  • Albuerne M, Lopez S, Naves FJ, et al. S100α and S100β proteins in human cutaneous sensory corpuscles: effects of nerve and spinal cord injury. Anat Rec. 1998;251(3):351–359.
  • Nishi M, Kawata M, Azmitia EC. S100beta promotes the extension of microtubule associated protein2 (MAP2) – immunoreactive neurites retracted after colchicine treatment in rat spinal cord culture. Neurosci Lett. 1997;229(3):212–214.
  • Niu H, Hinkle DA, Wise PM. Dexamethasone regulates basic fibroblast growth factor, nerve growth factor and S100β expression in cultured hippocampal astrocytes. Mol Brain Res. 1997;51(1–2):97–105.
  • Meske V, Hamker U, Albert F, et al. The effects of β/A4-amyloid and its fragments on calcium homeostasis, glial fibrillary acidic protein and S100β staining, morphology and survival of cultured hippocampal astrocytes. Neuroscience. 1998;85(4):1151–1160.
  • Sheng JG, Mrak RE, Griffin WS. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1α + microglia and S100β+ astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol. 1997;56(3):285–290.
  • Yu WH, Fraser PE. S100β interaction with tau is promoted by zinc and inhibited by hyperphosphorylation in Alzheimer's disease. J Neurosci. 2001;21(7):2240–2246.
  • Green AJ, Harvey RJ, Thompson EJ, et al. Increased S100β in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci Lett. 1997;235(1–2):5–8.
  • Griffin WS, Sheng JG, McKenzie JE, et al. Life-long overexpression of S100β in Down's syndrome: implications for Alzheimer pathogenesis. Neurobiol Aging. 1998;19(5):401–405.
  • Royston MC, McKenzie JE, Gentleman SM, et al. Overexpression of s100β in Down's syndrome: correlation with patient age and with beta-amyloid deposition. Neuropathol Appl Neurobiol. 1999;25(5):387–393.
  • Yadavalli S, Gunstad J, Glickman E, et al. Increased S100β is associated with reduced cognitive function in healthy older adults. Neuropsychobiology. 2008;57(3):121–125.
  • Sobaniec W, Kulak W, Bockowski L, et al. [Studies of damaged processes in the nervous system and possibilities of neuroprotection]. Przegl Lek. 2001;58(Suppl 1):41–47.
  • Jordan W, Hagedohm J, Wiltfang J, et al. Biochemical markers of cerebrovascular injury in sleep apnoea syndrome. Eur Respir J. 2002;20(1):158–164.
  • Sonka K, Kelemen J, Kemlink D, et al. Evening and morning plasma levels of protein S100B in patients with obstructive sleep apnea. Neuro Endocrinol Lett. 2007;28(5):575–579.
  • Banfalvi T, Gergye M, Beczassy E, et al. [Role of S100B protein in neoplasms and other diseases]. Magy Onkol. 2004;48(1):71–74.
  • Vos PE, van Gils M, Beems T, et al. Increased GFAP and S100β but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur J Neurol. 2006;13(6):632–638.
  • Sergeeva SP, Erofeeva LM, Gul'tiaev MM. [IL-1beta, IL-10, INF-gamma, TNF-alpha, S100beta, AMA-M2 and cell immune response in stroke]. Patol Fiziol Eksp Ter. 2011;(1):41–45.
  • Taggart DP, Mazel JW, Bhattacharya K, et al. Comparison of serum S-100β levels during CABG and intracardiac operations. Ann Thorac Surg. 1997;63(2):492–496.
  • Griffin WS, Sheng JG, Mrak RE. Senescence-accelerated overexpression of S100β in brain of SAMP6 mice. Neurobiol Aging. 1998;19(1):71–76.
  • Modi PK, Kanungo MS. Age-dependent expression of S100β in the brain of mice. Cell Mol Neurobiol. 2010;30(5):709–716.
  • Linstedt U, Meyer O, Kropp P, et al. Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anesthesia in different types of surgery. Acta Anaesthesiol Scand. 2002;46(4):384–389.
  • Wajima D, Nakagawa I, Nakase H, et al. Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas. Brain Res. 2013;1519:127–135.
  • Gripp S, Peiper M, Matuschek C, et al. Validity of S-100B in patients after brain radiation. Eur J Med Res. 2008;13(6):299–303.
  • Rosen H, Rosengren L, Herlitz J, et al. Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Stroke. 1998;29(2):473–477.
  • Mayer SA, Linares G. Can a simple blood test quantify brain injury? Crit Care. 2009;13(4):166.
  • Georgiadis D, Berger A, Kowatschev E, et al. Predictive value of S-100β and neuron-specific enolase serum levels for adverse neurologic outcome after cardiac surgery. J Thorac Cardiovasc Surg. 2000;119(1):138–147.
  • Herrmann M, Ebert AD, Galazky I, et al. Neurobehavioral outcome prediction after cardiac surgery: role of neurobiochemical markers of damage to neuronal and glial brain tissue. Stroke. 2000;31(3):645–650.
  • Jonsson H, Johnsson P, Birch-Iensen M, et al. S100B as a predictor of size and outcome of stroke after cardiac surgery. Ann Thorac Surg. 2001;71(5):1433–1437.
  • Johnsson P, Backstrom M, Bergh C, et al. Increased S100B in blood after cardiac surgery is a powerful predictor of late mortality. Ann Thorac Surg. 2003;75(1):162–168.
  • Snyder-Ramos SA, Gruhlke T, Bauer H, et al. Cerebral and extracerebral release of protein S100B in cardiac surgical patients. Anaesthesia. 2004;59(4):344–349.
  • Vidlund M, Holm J, Hakanson E, et al. The S-100B substudy of the GLUTAMICS trial: glutamate infusion not associated with sustained elevation of plasma S-100B after coronary surgery. Clin Nutr. 2010;29(3):358–364.
  • Connolly ES Jr., Winfree CJ, Rampersad A, et al. Serum S100B protein levels are correlated with subclinical neurocognitive declines after carotid endarterectomy. Neurosurgery. 2001;49(5):1076–1082. discussion 1082–1073.
  • Heyer EJ, Connolly ES. S-100β and carotid endarterectomy. J Cardiothorac Vasc Anesth. 2001;15(6):804–805.
  • Di Legge S, Di Piero V, Di Stani F, et al. Carotid endarterectomy and gliofibrillar S100b protein release. Neurol Sci. 2003;24(5):351–356.
  • Lambert JC, Ferreira S, Gussekloo J, et al. Evidence for the association of the S100β gene with low cognitive performance and dementia in the elderly. Mol Psychiatry. 2007;12(9):870–880.
  • Jonsson H, Johnsson P, Alling C, et al. Significance of serum S100 release after coronary artery bypass grafting. Ann Thorac Surg. 1998;65(6):1639–1644.
  • Kusch B, Vogt S, Sirat AS, et al. Serum S-100β protein release in coronary artery bypass grafting: laminar versus pulsatile flow. Thorac Cardiovasc Surg. 2001;49(3):179–183.
  • Mazzini GS, Schaf DV, Vinade ER, et al. Increased S100B serum levels in dilated cardiomyopathy patients. J Card Fail. 2007;13(10):850–854.
  • Raabe A, Seifert V. Fatal secondary increase in serum S-100B protein after severe head injury. Report of three cases. J Neurosurg. 1999;91(5):875–877.
  • Elting JW, de Jager AE, Teelken AW, et al. Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci. 2000;181(1–2):104–110.
  • Beaudeux JL. S100B protein: a novel biomarker for the diagnosis of head injury. Ann Pharm Fr. 2009;67(3):187–194.
  • Nirula R, Diaz-Arrastia R, Brasel K, et al. Safety and efficacy of erythropoietin in traumatic brain injury patients: a pilot randomized trial. Crit Care Res Pract. 2010;2010:209848. doi:10.1155/2010/209848.
  • Murillo-Cabezas F, Munoz-Sanchez MA, Rincon-Ferrari MD, et al. The prognostic value of the temporal course of S100β protein in post-acute severe brain injury: a prospective and observational study. Brain Inj. 2010;24(4):609–619.
  • Saida T. [Multiple sclerosis: disease entity, subtypes and variants, and diagnostic criteria]. Nihon Rinsho. 2003;61(8):1285–1292.
  • Infante JR, Martinez A, Ochoa J, et al. Cerebrospinal fluid S-100 protein levels in neurological pathologies. J Physiol Biochem. 2003;59(4):255–261.
  • Yao B, Zhang LN, Ai YH, et al. Serum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. Neurochem Res. 2014;39(7):1263–1269.
  • Kay A, Petzold A, Kerr M, et al. Temporal alterations in cerebrospinal fluid amyloid beta-protein and apolipoprotein E after subarachnoid hemorrhage. Stroke. 2003;34(12):e240–e243.
  • Wunderlich MT, Ebert AD, Kratz T, et al. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke. 1999;30(6):1190–1195.
  • Ali MS, Harmer M, Vaughan R. Serum S100 protein as a marker of cerebral damage during cardiac surgery. Br J Anaesth. 2000;85(2):287–298.
  • Reynolds MA, Kirchick HJ, Dahlen JR, et al. Early biomarkers of stroke. Clin Chem. 2003;49(10):1733–1739.
  • Li K, Jia J, Wang Z, et al. Elevated serum levels of NSE and S-100β correlate with increased risk of acute cerebral infarction in Asian populations. Med Sci Monit. 2015;21:1879–1888.
  • Yardan T, Erenler AK, Baydin A, et al. Usefulness of S100B protein in neurological disorders. J Pak Med Assoc. 2011;61(3):276–281.
  • Buttner T, Weyers S, Postert T, et al. S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke. 1997;28(10):1961–1965.
  • Petzold A, Michel P, Stock M, et al. Glial and axonal body fluid biomarkers are related to infarct volume, severity, and outcome. J Stroke Cerebrovasc Dis. 2008;17(4):196–203.
  • Parton E, Lagae L, Borghs G. Stroke diagnosis with lab-on-a-chip. Med Device Technol. 2009;20(5):15–17.
  • Nash DL, Bellolio MF, Stead LG. S100 as a marker of acute brain ischemia: a systematic review. Neurocrit Care. 2008;8(2):301–307.
  • Ahmad O, Wardlaw J, Whiteley WN. Correlation of levels of neuronal and glial markers with radiological measures of infarct volume in ischaemic stroke: a systematic review. Cerebrovasc Dis. 2012;33(1):47–54.
  • Missler U, Wiesmann M, Friedrich C, et al. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997;28(10):1956–1960.
  • Wunderlich MT, Wallesch CW, Goertler M. Release of neurobiochemical markers of brain damage is related to the neurovascular status on admission and the site of arterial occlusion in acute ischemic stroke. J Neurol Sci. 2004;227(1):49–53.
  • Jiang D, Wang Y, Zang Y, et al. Neuroprotective effects of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury. Drug Dev Res. 2016;77(3):124–133.
  • Serarslan Y, Bal R, Altug ME, et al. Caffeic acid phenethyl ester decreases the level of S-100B protein after middle cerebral artery [correction for after] occlusion in rabbits. Pak J Pharm Sci. 2009;22(3):313–316.
  • Tateishi N, Mori T, Kagamiishi Y, et al. Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part II: suppression of astrocytic activation by a novel agent (R)-(-)-2-propyloctanoic acid (ONO-2506) leads to mitigation of delayed infarct expansion and early improvement of neurologic deficits. J Cereb Blood Flow Metab. 2002;22(6):723–734.
  • Matsui T, Mori T, Tateishi N, et al. Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part I: enhanced astrocytic synthesis of s-100β in the periinfarct area precedes delayed infarct expansion. J Cereb Blood Flow Metab. 2002;22(6):711–722.
  • Stranjalis G, Korfias S, Psachoulia C, et al. The prognostic value of serum S-100B protein in spontaneous subarachnoid haemorrhage. Acta Neurochir (Wien). 2007;149(3):231–237. discussion 237–238.
  • Lewis SB, Wolper R, Chi YY, et al. Identification and preliminary characterization of ubiquitin C terminal hydrolase 1 (UCHL1) as a biomarker of neuronal loss in aneurysmal subarachnoid hemorrhage. J Neurosci Res. 2010;88(7):1475–1484.
  • Oertel M, Schumacher U, McArthur DL, et al. S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci. 2006;13(8):834–840.
  • Moritz S, Warnat J, Bele S, et al. The prognostic value of NSE and S100B from serum and cerebrospinal fluid in patients with spontaneous subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2010;22(1):21–31.
  • Brea D, Sobrino T, Blanco M, et al. Temporal profile and clinical significance of serum neuron-specific enolase and S100 in ischemic and hemorrhagic stroke. Clin Chem Lab Med. 2009;47(12):1513–1518.
  • Unden J, Strandberg K, Malm J, et al. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J Neurol. 2009;256(1):72–77.
  • Marginean IC, Stanca DM, Vacaras V, et al. Plasmatic markers in hemorrhagic stroke. J Med Life. 2011;4(2):148–150.
  • Alatas OD, Gurger M, Atescelik M, et al. Neuron-specific enolase, S100 calcium-binding protein B, and heat shock protein 70 levels in patients with intracranial hemorrhage. Medicine (Baltimore). 2015;94(45):e2007.
  • Korfias S, Stranjalis G, Papadimitriou A, et al. Serum S-100B protein as a biochemical marker of brain injury: a review of current concepts. Curr Med Chem. 2006;13(30):3719–3731.
  • Foerch C, Wunderlich MT, Dvorak F, et al. Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke. 2007;38(9):2491–2495.
  • Tanaka Y, Marumo T, Shibuta H, et al. Serum S100B, brain edema, and hematoma formation in a rat model of collagenase-induced hemorrhagic stroke. Brain Res Bull. 2009;78(4–5):158–163.
  • Delgado P, Alvarez Sabin J, Santamarina E, et al. Plasma S100B level after acute spontaneous intracerebral hemorrhage. Stroke. 2006;37(11):2837–2839.
  • Tanaka Y, Marumo T, Omura T, et al. Early increases in serum S100B are associated with cerebral hemorrhage in a rat model of focal cerebral ischemia. Brain Res. 2008;1227:248–254.
  • Kumar A, Kumar P, Misra S, et al. Biomarkers to enhance accuracy and precision of prediction of short-term and long-term outcome after spontaneous intracerebral haemorrhage: a study protocol for a prospective cohort study. BMC Neurol. 2015;15:136.
  • Kazmierski R, Michalak S, Wencel-Warot A, et al. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology. 2012;79(16):1677–1685.
  • Martens P, Raabe A, Johnsson P. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke. 1998;29(11):2363–2366.
  • Tanaka Y, Marumo T, Omura T, et al. Relationship between cerebrospinal and peripheral S100B levels after focal cerebral ischemia in rats. Neurosci Lett. 2008;436(1):40–43.
  • Ishibashi H, Funakoshi Y. Serum S-100B protein levels in left- and right-hemisphere strokes. J Clin Neurosci. 2008;15(5):520–525.
  • Zhou S, Bao J, Wang Y, et al. S100β as a biomarker for differential diagnosis of intracerebral hemorrhage and ischemic stroke. Neurol Res. 2016;38(4):327–332.
  • Haupt WF, Chopan G, Sobesky J, et al. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J Neurophysiol. 2016;115(3):1273–1278.
  • Brouns R, De Vil B, Cras P, et al. Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem. 2010;56(3):451–458.
  • Richard S, Lagerstedt L, Burkhard PR, et al. E-selectin and vascular cell adhesion molecule-1 as biomarkers of 3-month outcome in cerebrovascular diseases. J Inflamm (Lond). 2015;12:61.
  • Jauch EC, Lindsell C, Broderick J, et al. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Study. Stroke. 2006;37(10):2508–2513.
  • Foerch C, Otto B, Singer OC, et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke. 2004;35(9):2160–2164.
  • Ustundag M, Orak M, Guloglu C, et al. The role of serum osteoprotegerin and S-100 protein levels in patients with acute ischaemic stroke: determination of stroke subtype, severity and mortality. J Int Med Res. 2011;39(3):780–789.
  • Armstrong CW, Bosio E, Neil C, et al. Distinct inflammatory responses differentiate cerebral infarct from transient ischaemic attack. J Clin Neurosci. 2017;35:97–103.
  • Mori T, Tan J, Arendash GW, et al. Overexpression of human S100B exacerbates brain damage and periinfarct gliosis after permanent focal ischemia. Stroke. 2008;39(7):2114–2121.
  • Kogel D, Peters M, Konig HG, et al. S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons: clinical implications for the role of S100B in excitotoxic brain injury. Neuroscience. 2004;127(4):913–920.
  • Postler E, Lehr A, Schluesener H, et al. Expression of the S-100 proteins MRP-8 and -14 in ischemic brain lesions. Glia. 1997;19(1):27–34.
  • Hays SJ. Therapeutic approaches to the treatment of neuroinflammatory diseases. Curr Pharm Des. 1998;4(4):335–348.
  • Shirasaki Y, Edo N, Sato T. Serum S-100b protein as a biomarker for the assessment of neuroprotectants. Brain Res. 2004;1021(2):159–166.
  • Mori T, Town T, Tan J, et al. Modulation of astrocytic activation by arundic acid (ONO-2506) mitigates detrimental effects of the apolipoprotein E4 isoform after permanent focal ischemia in apolipoprotein E knock-in mice. J Cereb Blood Flow Metab. 2005;25(6):748–762.
  • Vissers JL, Mersch ME, Rosmalen CF, et al. Rapid immunoassay for the determination of glial fibrillary acidic protein (GFAP) in serum. Clin Chim Acta. 2006;366(1–2):336–340.
  • Yasuda Y, Tateishi N, Shimoda T, et al. Relationship between S100β and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res. 2004;1021(1):20–31.
  • Martin RH, Yeatts SD, Hill MD, et al. ALIAS (Albumin in Acute Ischemic Stroke) trials: analysis of the combined data from parts 1 and 2. Stroke. 2016;47(9):2355–2359.
  • Bielewicz J, Kurzepa J, Czekajska-Chehab E, et al. Worse neurological state during acute ischemic stroke is associated with a decrease in serum albumin levels. J Mol Neurosci. 2016;58(4):493–496.
  • Wang M, Wang Y, He J, et al. Albumin induces neuroprotection against ischemic stroke by altering Toll-like receptor 4 and regulatory T cells in mice. CNS Neurol Disord Drug Targets. 2013;12(2):220–227.
  • Babu MS, Kaul S, Dadheech S, et al. Serum albumin levels in ischemic stroke and its subtypes: correlation with clinical outcome. Nutrition. 2013;29(6):872–875.
  • Nayak AR, Kashyap RS, Kabra D, et al. Prognostic significance of ischemia-modified albumin in acute ischemic stroke patients: a preliminary study. Ann Neurosci. 2011;18(1):5–7.
  • Zhang Q, Lei YX, Wang Q, et al. Serum albumin level is associated with the recurrence of acute ischemic stroke. Am J Emerg Med. 2016;34(9):1812–1816.
  • Idicula TT, Waje-Andreassen U, Brogger J, et al. Serum albumin in ischemic stroke patients: the higher the better. The Bergen Stroke Study. Cerebrovasc Dis. 2009;28(1):13–17.
  • Dziedzic T, Slowik A, Szczudlik A. Serum albumin level as a predictor of ischemic stroke outcome. Stroke. 2004;35(6):e156–e158.
  • Ralay Ranaivo H, Wainwright MS. Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 2010;1313:222–231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.