385
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Pharmacogenetics and levodopa induced motor complications

, &
Pages 384-392 | Received 31 Jul 2018, Accepted 15 Oct 2018, Published online: 02 Dec 2018

References

  • de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006;5:525–535.
  • Tambasco N, Romoli M, Calabresi P. Levodopa in Parkinson's disease: current status and future developments. Curr Neuropharmacol. 2018;16:1239–1252.
  • Kalinderi K, Fidani L, Katsarou Z, et al. Pharmacological treatment and the prospect of pharmacogenetics in Parkinson's disease. Int J Clin Pract. 2011;65:1289–1294.
  • Calabresi P, Di Filippo M, Ghiglieri V, et al. Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurol. 2010;9:1106–1117.
  • Rascol O. The pharmacological therapeutic management of levodopa-induced dyskinesias in patients with Parkinson's disease. J Neurol. 2000;247:II51–II57.
  • Poewe W. Treatments for Parkinson disease–past achievements and current clinical needs. Neurology 2009;72:S65–S73.
  • Weinshilboum R. Pharmacogenetics of methylation: relationship to drug metabolism. Clin Biochem. 1988;21:201–210.
  • Roberts JW, Cora-Locatelli G, Bravi D, et al. Catechol-O-methyltransferase inhibitor tolcapone prolongs levodopa/carbidopa action in parkinsonian patients. Neurology 1993;43:2685–2688.
  • Männistö PT, Ulmanen I, Lundström K. Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res. 1992;39:291–350.
  • Ferreira JJ, Lees AJ, Poewe W, et al. Effectiveness of opicapone and switching from entacapone in fluctuating Parkinson disease. Neurology. 2018;90:e1849–e1857.
  • Scanlon PD, Raymond FA, Weinshilboum RM. Catechol-O-methyltransferase: thermolabile enzyme in erythrocytes of subjects homozygous for allele for low activity. Science. 1979;203:63–65.
  • Boudikova B, Szumlanski C, Maidak B, et al. Human liver catechol-O-methyltransferase pharmacogenetics. Clin Pharmacol Ther. 1990;48:381–389.
  • Floderus Y, Ross SB, Wetterberg L. Erythrocyte catechol-O-methyltransferase activity in a Swedish population. Clin Genet. 2008;19:389–392. 1981
  • Lundström K, Tenhunen J, Tilgmann C, et al. Cloning, expression and structure of catechol-O-methyltransferase. Biochim Biophys Acta. 1995; 1251:1–10.
  • Mcleod HL, Fang L, Luo X, et al. Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans. J Pharmacol Exp Ther. 1994;270:26–29.
  • Xie T, Ho S-L, Ramsden D. Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol Pharmacol. 1999;56:31–38.
  • de Lau LM, Verbaan D, Marinus J, et al. Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson's disease. Mov Disord. 2012;27:132–135.
  • Bialecka M, Kurzawski M, Klodowska-Duda G, et al. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson's disease, levodopa treatment response, and complications. Pharmacogenet Genom. 2008;18:815–821.
  • Sampaio TF, Dos Santos EUD, de Lima GDC, et al. MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson's disease. J Clin Pharmacol. 2018;58:920–926.
  • Białecka M, Droździk M, Kłodowska-Duda G, et al. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson's disease. Acta Neurol Scand. 2004;110:260–266.
  • Lee MS, Lyoo CH, Ulmanen I, et al. Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson's disease. Neurosci Lett. 2001;298:131–134.
  • Watanabe M, Harada S, Nakamura T, et al. Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson's disease. Neuropsychobiology 2003;48:190–193.
  • Cheshire P, Bertram K, Ling H, et al. Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson's disease. Neurodegener Dis. 2014;13:24–28.
  • Giros B, el Mestikawy S, Bertrand L, et al. Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 1991;295:149–154.
  • Kilty JE, Lorang D, Amara SG. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science. 1991;254:578–579.
  • Shimada S, Kitayama S, Lin CL, et al. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science. 1991;254:576–578.
  • Kaplan N, Vituri A, Korczyn AD, et al. Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson's disease. J Mol Neurosci. 2014;53:183–188.
  • Talkowski ME, McCann KL, Chen M, et al. Fine-mapping reveals novel alternative splicing of the dopamine transporter. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:1434–1447.
  • Sossi V, de la Fuente-Fernández R, Schulzer M, et al. Dopamine transporter relation to dopamine turnover in Parkinson's disease: a positron emission tomography study . Ann Neurol. 2007;62:468–474.
  • Troiano AR, de la Fuente-Fernandez R, Sossi V, et al. PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 2009;72:1211–1216.
  • Kaiser R, Hofer A, Grapengiesser A, et al. L-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology. 2003; 60:1750–1755.
  • Nishijima H, Ueno T, Funamizu Y, et al. Levodopa treatment and dendritic spine pathology. Mov Disord. 2018;33:877–888.
  • Grandy DK, Litt M, Allen L, et al. The human dopamine D2 receptor gene is located on chromosome 11 at q22-q23 and identifies a TaqI RFLP. Am J Hum Genet. 1989;45:778–785.
  • Oliveri RL, Annesi G, Zappia M, et al. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology. 1999;53:1425–1430.
  • Zappia M, Annesi G, Nicoletti G, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol. 2005; 62:601–605.
  • Strong JA, Dalvi A, Revilla FJ, et al. Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson's disease. Mov Disord. 2006;21:654–659.
  • Wang J, Liu ZL, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology. 2001;56:1757–1759.
  • Rieck M, Schumacher-Schuh AF, Altmann V, et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson's disease patients. Pharmacogenomics. 2012;13:1701–1710.
  • Kusters CDJ, Paul KC, Guella I, et al. Dopamine receptors and BDNF-haplotypes predict dyskinesia in Parkinson's disease. Parkinsonism Relat Disord. 2018;47:39–44.
  • Bezard E, Ferry S, Mach U, et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med. 2003;9:762–767.
  • Solís O, Garcia-Montes JR, González-Granillo A, et al. Dopamine D3 receptor modulates L-dopa-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb Cortex. 2017;27:435–446.
  • Guillin O, Griffon N, Bezard E, et al. Brain-derived neurotrophic factor controls dopamine D3 receptor expression: therapeutic implications in Parkinson's disease. Eur J Pharmacol. 2003;480:89–95.
  • Foltynie T, Cheeran B, Williams-Gray CH, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2009;80:141–144.
  • Lundstrom K, Turpin MP. Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun. 1996;225:1068–1072.
  • Lerer B, Segman RH, Fangerau H, et al. Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 2002;27:105–119.
  • Steen VM, Løvlie R, MacEwan T, et al. Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry. 1997;2:139–145.
  • Lee JY, Cho J, Lee EK, et al. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson's disease. Mov Disord. 2011;26:73–79.
  • Comi C, Ferrari M, Marino F, et al. Polymorphisms of dopamine receptor genes and risk of L-dopa-induced dyskinesia in Parkinson's Disease. Int J Mol Sci. 2017;18: E242.
  • Solís O, Moratalla R. Dopamine receptors: homomeric and heteromeric complexes in L-DOPA-induced dyskinesia. J Neural Transm. 2018;125:1187–1194.
  • Lanza K, Meadows SM, Chambers NE, et al. Behavioral and cellular dopamine D1 and D3 receptor-mediated synergy: Implications for L-DOPA-induced dyskinesia. Neuropharmacology. 2018;138:304–314.
  • Torvinen M, Kozell LB, Neve KA, et al. Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor. JMN. 2004;24:173–180.
  • Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, et al. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson's disease patients? Pharmacogenomics 2015;16:573–582.
  • Greenbaum L, Cohen OS, Inzelberg R, et al. Association of the adenosine receptor A2A (ADORA2A) gene with L-dopa induced dyskinesia in Parkinson’s disease [abstract]. Mov Disord. 2012;27(Suppl. 1):1385.
  • Karpa V, Kalinderi K, Chatzikyriakidou A, et al. Association between Adora2A rs2298383 polymorphism and Parkinson’s disease in a Greek population. AUMJ 2016;43:1–6.
  • Childs E, Hohoff C, Deckert J, et al. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacol. 2008;33:2791–2800.
  • Hohoff C, Mullings EL, Heatherley SV, et al. Adenosine A(2A) receptor gene: evidence for association of risk variants with panic disorder and anxious personality. J Psychiatr Res. 2010;44:930–937.
  • Jagannathan K, Calhoun VD, Gelernter J, et al. Genetic associations of brain structural networks in schizophrenia: a preliminary study . Biol Psychiatry. 2010;68:657–666.
  • Casetta I, Vincenzi F, Bencivelli D, et al. A(2A) adenosine receptors and Parkinson's disease severity. Acta Neurol Scand. 2014;129:276–281.
  • Calon F, Dridi M, Hornykiewicz O, et al. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain. 2004;127:1075–1084.
  • Chen JF, Sonsalla PK, Pedata F, et al. Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and ‘fine tuning’ modulation . Prog Neurobiol. 2007;83:310–331.
  • Tsuboi Y. Environmental-genetic interactions in the pathogenesis of Parkinson's disease. Exp Neurobiol. 2012; 21:123–128.
  • Cieślak M, Komoszyński M, Wojtczak A. Adenosine A(2A) receptors in Parkinson’s disease treatment. Purinergic Signal. 2008;4:305–312.
  • Peckys D, Landwehrmeyer GB. Expression of m, k, and d opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience. 1999;88:1093–1135.
  • Henry B, Fox SH, Crossman AR, et al. Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Exp Neurol. 2001;171:139–146.
  • Piccini P, Weeks RA, Brooks DJ. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann Neurol. 1997;42:720–726.
  • Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA. 1998;95:9608–9613.
  • Chen L, Togasaki DM, Langston JW, et al. Enhanced striatal opioid receptor-mediated G-protein activation in L-dopa–treated dyskinetic monkeys. Neuroscience 2005;132:409–420.
  • Elahi B, Phielipp N, Chen R. N-Methyl-D-Aspartate antagonists in levodopa induced dyskinesia: a meta-analysis. Can J Neurol Sci. 2012;39:465–472.
  • Ivanova SA, Loonen AJ, Pechlivanoglou P, et al. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Transl Psychiatry. 2012;2:e67.
  • Pruunsild P, Kazantseva A, Aid T, et al. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007;90:397–406.
  • Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Prog Neurobiol. 2003;69:341–374.
  • Karakasis C, Kalinderi K, Katsarou Z, et al. Association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with Parkinson's disease in a Greek population. J Clin Neurosci. 2011;18:1744–1745.
  • Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–269.
  • Tronci E, Napolitano F, Muñoz A, et al. BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to L-dopa-induced dyskinesia in 6-OHDA-lesioned rats. Exp Neurol. 2017;297:73–81.
  • Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron. 2004;44:595–600.
  • Mata IF, Wedemeyer WJ, Farrer MJ, et al. LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci. 2006;29:286–293.
  • Lesage S, Brice A. Parkinson's disease: from monogenic forms to genetic susceptibility factors . Hum Mol Genet. 2009;18:R48–R59.
  • Giasson BI, Van Deerlin VM. Mutations in LRRK2 as a cause of Parkinson's disease. Neurosignals 2008;16:99–105.
  • Kalinderi K, Fidani L, Bostantjopoulou S. LRRK2 and Parkinson’s disease. AUMJ. 2011;38:31–38.
  • Kalinderi K, Fidani L, Bostantjopoulou S. Genetics of familial Parkinson’s disease. AUMJ. 2007;34:9–18.
  • Lesage S, Belarbi S, Troiano A, French Parkinson’s Disease Genetics Study Group, et al. Is the common LRRK2 G2019S mutation related to dyskinesias in North African Parkinson disease? Neurology. 2008;71:1550.
  • Yahalom G, Kaplan N, Vituri A, et al. Dyskinesias in patients with Parkinson's disease: effect of the leucine-rich repeat kinase 2 (LRRK2) G2019S mutation. Parkinsonism Relat Disord. 2012;18:1039–1041.
  • Stanic J, Mellone M, Cirnaru MD, et al. LRRK2 phosphorylation level correlates with abnormal motor behavior in an experimental model of levodopa-induced dyskinesias. Mol Brain. 2016;9:53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.