217
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling

, &
Pages 1053-1065 | Received 10 Sep 2018, Accepted 12 Jun 2019, Published online: 01 Jul 2019

References

  • Correia SC, Santos RX, Perry G. Insulin-resistant brain state: the culprit in sporadic Alzheimer's disease? Age Res Rev. 2011;10:264–273.
  • Viola KL, Klein WL. Amyloid beta oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015;129:183–206.
  • Correia SC, Santos RX, Carvalho C, et al. Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer's disease and diabetes interrelation. Brain Res. 2012;1441:64–78.
  • Assaraf MI, Diaz Z, Liberman A, et al. Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment. J Neuropathol Exp Neurol. 2007;66:389–398.
  • Khairallah MI, Kassem LA. Alzheimer's disease: current status of etiopathogenesis and therapeutic strategies. Pak J Biol Sci. 2011;14:257–272.
  • Klein WL. ADDLs & protofibrils-the missing links? Neurobiol Aging. 2002;23:231–235.
  • Gutierres JM, Carvalho FB, Schetinger MR, et al. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer's type. Life Sci. 2014;96:7–17.
  • Javed H, Khan MM, Khan A, et al. S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer's type. Brain Res. 2011;1389:133–142.
  • Salkovic-Petrisic M, Osmanovic-Barilar J, Bruckner MK, et al. Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer's disease: a long-term follow up study. J Neural Transm. 2011;118:765–772.
  • Salkovic-Petrisic M, Osmanovic-Barilar J, Knezovic A, et al. Long-term oral galactose treatment prevents cognitive deficits in male Wistar rats treated intracerebroventricularly with streptozotocin. Neuropharmacology. 2014;77:68–80.
  • Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14(Suppl): S15–S45 [https://doi.org/10.1105/tpc.010441] [https://doi.org/12045268]
  • Finkelstein RR, Rock CD. Abscisic acid biosynthesis and response. Arabidopsis Book. 2002;1:e0058.
  • Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol. 2005;8:409–414.
  • Le Page-Degivry MT, Bidard JN, Rouvier E, et al. Presence of abscisic acid, a phytohormone, in the mammalian brain. Proc Natl Acad Sci USA. 1986;83:1155–1158.
  • Bruzzone S, Moreschi I, Usai C, et al. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA. 2007;104(14):5759–5764.
  • Magnone M, Sturla L, Jacchetti E, et al. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation. FASEB J. 2012;26:1261–1271.
  • Scarfi S, Ferraris C, Fruscione F, et al. Cyclic ADP-ribose-mediated expansion and stimulation of human mesenchymal stem cells by the plant hormone abscisic acid. Stem Cells (Dayton, Ohio). 2008;26:2855–2864.
  • Bruzzone S, Bodrato N, Usai C, et al. Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger. J Biol Chem. 2008;283:32188.
  • Guri AJ, Hontecillas R, Si H, et al. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clin Nutr (Edinburgh, Scotland). 2007;26:107–116.
  • Bassaganya-Riera J, Skoneczka J, Kingston DG, et al. Mechanisms of action and medicinal applications of abscisic Acid. CMC. 2010;17:467–478.
  • Sturla L, Fresia C, Guida L, et al. LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells. J Biol Chem. 2009;284:28045–28057.
  • Freitag CM, Miller RJ. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines? Front Cell Neurosci. 2014;8:238.
  • Esposito E, Cuzzocrea S. Targeting the peroxisome proliferator-activated receptors (PPARs) in spinal cord injury. Exp Opin Ther Target. 2011;15:943–959.
  • Barbiero JK, Santiago RM, Persike DS, et al. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res. 2014;274:390–399.
  • Bishop-Bailey D, Bystrom J. Emerging roles of peroxisome proliferator-activated receptor-beta/delta in inflammation. Pharmacol Ther. 2009;124:141–150.
  • de la Monte SM, Tong M, Lester-Coll N, et al. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J Alzheimers Dis. 2006;10:89–109.
  • Iwashita A, Muramatsu Y, Yamazaki T, et al. Neuroprotective efficacy of the peroxisome proliferator-activated receptor delta-selective agonists in vitro and in vivo. J Pharmacol Exp Ther. 2006;320:1087–1096.
  • Yin KJ, Deng Z, Hamblin M, et al. Vascular PPARdelta protects against stroke-induced brain injury. Arterioscler Thromb Vasc Biol. 2011;31:574–581.
  • Puce S, Basile G, Bavestrello G, et al. Abscisic acid signaling through cyclic ADP-ribose in hydroid regeneration. J Biol Chem. 2004;279:39783–39788.
  • Zocchi E, Basile G, Cerrano C, et al. ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges. J Cell Sci. 2003;116:629–636.
  • Giese KP, Mizuno K. The roles of protein kinases in learning and memory. Learn Mem. 2013;20:540.
  • Guri AJ, Hontecillas R, Ferrer G, et al. Loss of PPAR gamma in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. J Nutr Biochem. 2008;19:216–228.
  • Naderi R, Esmaeili-Mahani S, Abbasnejad M. Phosphatidylinositol-3-kinase and protein kinase C are involved in the pro-cognitive and anti-anxiety effects of phytohormone abscisic acid in rats. Biomed Pharmacother. 2017;96:112–119.
  • Guri AJ, Evans NP, Hontecillas R, et al. T cell PPAR γ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD. J Nutr Biochem. 2011;22:812–819. 12/15
  • Mollashahi M, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid elicits antinociceptive effects in rats through the activation of opioid and peroxisome proliferator-activated receptors beta/delta. Eur J Pharmacol. 2018;832:75–80.
  • Kobilo T, Yuan C, van Praag H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem. 2011;18:103–107.
  • Yu S, Levi L, Casadesus G, et al. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) in the brain. J Biol Chem. 2014;289:12748.
  • Paxinos G, Franklin K. The mouse brain in stereotaxic coordinates. London: Gulf Professional Publishing; 2004.
  • Ahmed ME, Javed H, Khan MM, et al. Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma. 2013;250:1067–1078.
  • Soti M, Abbasnejad M, Kooshki R, et al. Central microinjection of phytohormone abscisic acid changes feeding behavior, decreases body weight, and reduces brain oxidative stress in rats. Nutr Neurosci. 2018; Feb 6:1–10 (in press).
  • Izquierdo LA, Vianna M, Barros DM, et al. Short- and long-term memory are differentially affected by metabolic inhibitors given into hippocampus and entorhinal cortex. Neurobiol Learn Mem. 2000;73:141–149.
  • Aghaei I, Shabani M, Doustar N, et al. Peroxisome proliferator-activated receptor-gamma activation attenuates motor and cognition impairments induced by bile duct ligation in a rat model of hepatic cirrhosis. Pharmacol Biochem Behav. 2014;120:133–139.
  • Kameyama T, Nabeshima T, Kozawa T. Step-down-type passive avoidance- and escape-learning method. Suitability for experimental amnesia models. J Pharmacol Methods. 1986;16:39–52.
  • Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–683.
  • Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33.
  • Rozas G, Guerra MJ, Labandeira-Garcı́a JL. An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of Parkinsonism. Brain Res Brain Res Protoc. 1997;2:75–84.
  • Qi CC, Ge JF, Zhou JN. Preliminary evidence that abscisic acid improves spatial memory in rats. Physiol Behav. 2015;139:231–239.
  • Guri AJ, Misyak SA, Hontecillas R, et al. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall. J Nutr Biochem. 2010;21:1178–1185.
  • Hontecillas R, Roberts PC, Carbo A, et al. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARgamma-dependent mechanism. J Nutri Biochem. 2013;24:1019–1027.
  • Li HH, Hao RL, Wu SS, et al. Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochem Pharmacol. 2011;82:701.
  • Schwartz SH, Qin X, Zeevaart JA. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 2003;131:1591–1601.
  • Berger J, Moller DE. The mechanisms of action of PPARs. Ann Rev Med. 2002;53:409–435.
  • Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Rev. 1999;20:649–688.
  • Shaw N, Elholm M, Noy N. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem. 2003;278:41589–41592.
  • Deplanque D, Gele P, Petrault O, et al. Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci. 2003;23:6264–6271.
  • Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol. 2010;10:365–376.
  • Sivarajah A, Chatterjee PK, Patel NS, et al. Agonists of peroxisome-proliferator activated receptor-gamma reduce renal ischemia/reperfusion injury. Am J Nephrol. 2003;23:267–276.
  • Valera E, Sanchez-Martin FJ, Ferrer-Montiel AV, et al. NMDA-induced neuroprotection in hippocampal neurons is mediated through the protein kinase A and CREB (cAMP-response element-binding protein) pathway. Neurochem Int. 2008;53:148–154.
  • García-Fontana B, Morales-Santana S, Novo-Rodríguez C, et al. Association between serum levels of PPAR[gamma] and vertebral fractures in type 2 diabetes mellitus patients. Bone Abstr. 2016;5:P435.
  • Liu L, Zhuang X, Jiang M, et al. ANGPTL4 mediates the protective role of PPARgamma activators in the pathogenesis of preeclampsia. Cell Death Dis. 2017;8:e3054.
  • Szalardy L, Zadori D, Tanczos E, et al. Elevated levels of PPAR-gamma in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett. 2013;554:131–134.
  • Kalinin S, Richardson JC, Feinstein DL. A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer's disease. Curr Alzheimer Res. 2009;6:431–437.
  • Das NR, Gangwal RP, Damre MV, et al. A PPAR-beta/delta agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson's disease. Curr Neurovasc Res 2014;11:114–124.
  • Bassaganya-Riera J, Guri AJ, Lu P, et al. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2011;286:2504–2516.
  • Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 2012;5:14.
  • Pittenger C, Fasano S, Mazzocchi-Jones D, et al. Impaired bidirectional synaptic plasticity and procedural memory formation in striatum-specific cAMP response element-binding protein-deficient mice. J Neurosci. 2006;26:2808–2813.
  • Qi M, Zhuo M, Skalhegg BS, et al. Impaired hippocampal plasticity in mice lacking the Cbeta1 catalytic subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA. 1996;93:1571–1576.
  • Yasuda H, Barth AL, Stellwagen D, et al. A developmental switch in the signaling cascades for LTP induction. Nat Neurosci. 2003;6:15–16.
  • Puzzo D, Vitolo O, Trinchese F, et al. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci. 2005;25:6887–6897.
  • Yamamoto-Sasaki M, Ozawa H, Saito T, et al. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res. 1999;824:300–303.
  • Vitolo OV, Sant'Angelo A, Costanzo V, et al. Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci USA. 2002;99:13217–13221.
  • Fang X, Yu SX, Lu Y, et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA. 2000;97:11960–11965.
  • Chen HY, Liu Q, Salter AM, et al. Synergism between cAMP and PPARgamma signalling in the Initiation of UCP1 Gene Expression in HIB1B Brown Adipocytes. PPAR Res. 2013;2013:1.
  • Lazennec G, Canaple L, Saugy D, et al. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol Endocrinol. 2000;14:1962–1975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.