817
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Noradrenergic pathways of locus coeruleus in Parkinson’s and Alzheimer’s pathology

Pages 251-261 | Received 14 Mar 2019, Accepted 09 Sep 2019, Published online: 13 Oct 2019

References

  • McMillan PJ, White SS, Franklin A, et al. Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson's disease and Alzheimer's disease. Brain Res. 2011;1373:240–252. 10
  • Bekar LK, Wei HS, Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab. 2012;32(12):2135–2145.
  • Chen X, Huddleston DE, Langley J, et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn Reson Imaging. 2014;32(10):1301–1306.
  • Brunnström H, Friberg N, Lindberg E, et al. Differential degeneration of the locus coeruleus in dementia subtypes. Clin Neuropathol. 2011;30(3):104–110.
  • Guimarães J, Moura E, Silva E, et al. Locus coeruleus is involved in weight loss in a rat model of Parkinson's disease: an effect reversed by deep brain stimulation. Brain Stimul. 2013;6(6):845–855.
  • Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015;25(21):R1051–R1056.
  • Lewis DA, Melchitzky DS, Sesack SR, et al. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol. 2001;432(1):119–136.
  • Loughlin SE, Foote SL, Grzanna R. Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets. Neuroscience. 1986;18(2):307–319.
  • Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42(1):33–84.
  • Swanson LW. The locus coeruleus: a cytoarchitectonic, Golgi and immunohistochemical study in the albino rat. Brain Res. 1976;110(1):39–56.
  • Aston-Jones G, Ennis M, Pieribone VA, et al. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science. 1986;234(4777):734–737.
  • Llorca-Torralba M, Borges G, Neto F, et al. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience. 2016;338:93–113.
  • Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, et al. Stress response, brain noradrenergic system and cognition. Adv Exp Med Biol. 2017;980:67–74.
  • Khanbabian MV, Sarkisian RSh, Manasian KA. Effect of stimulation of the locus coeruleus and raphe nuclei on activity of the neurons of the nucleus intermedius of the cerebellum. Zh Vyssh Nerv Deiat Im I P Pavlova. 1984;34(1):166–168.
  • Luppi P-H, Aston-Jones G, Akaoka H, et al. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience. 1995;65(1):119–160.
  • Jodo E, Chiang C, Aston-Jones G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleusneurons. Neuroscience. 1998;83(1):63–79.
  • Sara SJ, Segal M. Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. Prog Brain Res. 1991;88:571–585.
  • Vankov A, Hervé-Minvielle A, Sara SJ. Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci. 1995;7(6):1180–1187.
  • Sara SJ, Hervé-Minvielle A. Inhibitory influence of frontal cortex on locus coeruleus neurons. Proc Natl Acad Sci USA. 1995;92(13):6032–6036.
  • Toussay X, Basu K, Lacoste B, et al. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J Neurosci. 2013;33(8):3390–3401.
  • Valentino RJ, Page ME, Curtis AL. Activation of noradrenergic locus coeruleus neurons by hemodynamic stress is due to local release of corticotropin-releasing factor. Brain Res. 1991;555(1):25–34.
  • Page ME, Valentino RJ. Locus coeruleus activation by physiological challenges. Brain Res Bull. 1994;35(5-6):557–560.
  • Bouret S, Sara SJ. Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. Eur J Neurosci. 2004;20(3):791–802.
  • Clayton EC, Rajkowski J, Cohen JD, et al. Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. J Neurosci. 2004;24(44):9914–9920.
  • Bouret S, Richmond BJ. Relation of locus coeruleus neurons in monkeys to Pavlovian and operant behaviors. J Neurophysiol. 2009;101(2):898–911.
  • Einhäuser W, Stout J, Koch C, et al. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc Natl Acad Sci USA. 2008;105(5):1704–1709.
  • Tsuruoka M, Willis WD. Bilateral lesions in the area of the nucleus locus coeruleus affect the development of hyperalgesia during carrageenan-induced inflammation. Brain Res. 1996;726(1-2):233–236.
  • Sajedianfard J, Khatami S, Semnanian S, et al. In vivo measurement of noradrenaline in the locus coeruleus of rats during the formalin test: a microdialysisstudy. Eur J Pharmacol. 2005;512(2-3):153–156.
  • Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol. 2008;6(3):235–253.
  • Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol. 2008;6(3):254–285.
  • Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10(3):211–223.
  • Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Rev. 2004;45(1):38–78.
  • Mouton PR, Pakkenberg B, Gundersen HJ, et al. Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat. 1994;7(3):185–190.
  • German DC, Manaye K, Smith WK, et al. Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol. 1989;26(4):507–514.
  • Von Coelln R, Thomas B, Savitt JM, et al. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA. 2004;101(29):10744–10749.
  • Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, et al. Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci USA. 2007;104(34):13804–13809.
  • Miguelez C, Aristieta A, Cenci MA, et al. The locus coeruleus is directly implicated in L-DOPA-induced dyskinesia in parkinsonian rats: an electrophysiological and behavioural study. PLoS One. 2011;6(9):e24679.
  • (a) Fitzgerald P, Is elevated norepinephrine an etiological factor in some cases of Parkinson's disease? Med Hypotheses. 2014;828(4):462–469. (b) Förstl H, Levy R, Burns A, et al. Disproportionate loss of noradrenergic and cholinergic neurons as cause of depression in Alzheimer's disease–a hypothesis. Pharmacopsychiatry. 1994;27(01):11–15.
  • Vermeiren Y, De Deyn P. Targeting the norepinephrinergic system in Parkinson's disease and related disorders: the locus coeruleus story. Neurochem Int. 2017;102:22–32.
  • Giguère N, Burke Nanni S, Trudeau L. On cell loss and selective vulnerability of neuronal populations in Parkinson's disease. Front Neurol. 2018;9:455.
  • Ostock CY, Bhide N, Goldenberg AA, et al. Striatal norepinephrine efflux in l-DOPA-induced dyskinesia. Neurochem Int. 2018;114:85–98.
  • Hornykiewicz O, Kish SJ. Biochemical pathophysiology of Parkinson's disease. Adv Neurol. 1987;45:19–34.
  • Espay AJ, LeWitt PA, Kaufmann H. Norepinephrine deficiency in Parkinson's disease: the case for noradrenergic enhancement. Mov Disord. 2014;29(14):1710–1719.
  • Zarow C, Lyness SA, Mortimer JA, et al. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003;60(3):337–341.
  • Taquet H, Javoy-Agid F, Cesselin F, et al. Microtopography of methionine-enkephalin, dopamine and noradrenaline in the ventral mesencephalon of human control and Parkinsonian brains. Brain Res. 1982;235(2):303–314.
  • van Dijk KD, Berendse HW, Drukarch B, Fratantoni SA, et al. The proteome of the locus ceruleus in Parkinson's disease: relevance to pathogenesis. Brain Pathol. 2012;22(4):485–498.
  • Tong J, Hornykiewicz O, Kish SJ. Inverse relationship between brain noradrenaline level and dopamine loss in Parkinson disease: a possible neuroprotective role for noradrenaline. Arch Neurol. 2006;63(12):1724–1728.
  • Grenhoff J, Nisell M, Ferré S, et al. Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J Neural Transm. 1993;93(1):11–25.
  • Guiard BP, El Mansari M, Blier P. Cross-talk between dopaminergic and noradrenergic systems in the rat ventral tegmental area, locus ceruleus, and dorsal hippocampus. Mol Pharmacol. 2008;74(5):1463–1475.
  • Delaville C, Navailles S, Benazzouz A. Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience. 2012;202:424–433.
  • Wang T, Zhang QJ, Liu J, et al. Firing activity of locus coeruleus noradrenergic neurons increases in a rodent model of parkinsonism. Neurosci Bull. 2009;25(1):15–20.
  • Benarroch E. Locus coeruleus. Cell Tissue Res. 2018;373(1):221–232.
  • Li Y, Jiao Q, Du X, et al. Investigation of behavioral dysfunctions induced by monoamine depletions in a mouse model of Parkinson's disease. Front Cell Neurosci. 2018;12:241.
  • Grimbergen YA, Langston JW, Roos RA, et al. Postural instability in Parkinson's disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother. 2009;9(2):279–290.
  • Zweig RM, Cardillo JE, Cohen M, et al. The locus ceruleus and dementia in Parkinson's disease. Neurology. 1993;43(5):986–991.
  • Bosboom JL, Stoffers D, Wolters ECh. Cognitive dysfunction and dementia in Parkinson's disease. J Neural Transm. 2004;111(10-11):1303–1315.
  • Remy P, Doder M, Lees A, et al. Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128(6):1314–1322.
  • Ramos BP, Arnsten AF. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther. 2007;113(3):523–536.
  • Archer T, Fredriksson A. Influence of noradrenaline denervation on MPTP-induced deficits in mice. J Neural Transm. 2006;113(9):1119–1129.
  • Mavridis M, Degryse AD, Lategan AJ, et al. Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson's disease. Neuroscience. 1991;41(2-3):507–523.
  • Bing G, Zhang Y, Watanabe Y, et al. Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra. Brain Res. 1994;668(1-2):261–265.
  • Gesi M, Soldani P, Giorgi FS, et al. The role of the locus coeruleus in the development of Parkinson's disease. Neurosci Biobehav Rev. 2000;24(6):655–668.
  • Kilbourn MR, Sherman P, Abbott LC. Reduced MPTP neurotoxicity in striatum of the mutant mouse tottering. Synapse. 1998;30(2):205–210.
  • Masilamoni GJ, Bogenpohl JW, Alagille D, et al. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain. 2011;134(7):2057–2073.
  • Rousseaux MW, Marcogliese PC, Qu D, et al. Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci USA. 2012;109(39):15918–15923.
  • Viggiano D, Ruocco LA, Arcieri S, et al. Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder. Neural Plast. 2004;11(1-2):133–149.
  • García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. Thecoeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson's disease. Brain. 2013;136(7):2120–2129.
  • Corradini BR, Iamashita P, Tampellini E, et al. Complex network-driven view of genomic mechanisms underlying Parkinson's disease: analyses in dorsal motor vagal nucleus, locus coeruleus, and substantia nigra. Biomed Res Int. 2014;2014:1.
  • Tredici K, Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson's disease-related dementia. J Neurol Neurosurg Psychiatry. 2013;84(7):774–783.
  • Yang KM, Blue KV, Mulholland HM, et al. Characterization of oromotor and limb motor dysfunction in the DJ1 -/- model of Parkinson disease. Behav Brain Res. 2018;339:47–56.
  • Isaias IU, Marotta G, Pezzoli G, et al. Enhanced catecholamine transporter binding in the locus coeruleus of patients with early Parkinson disease. BMC Neurol. 2011;11(1):88. 10.1186/1471-2377-11-88.
  • Mocchetti I, De Bernardi MA, Szekely AM, et al. Regulation of nerve growth factor biosynthesis by beta-adrenergic receptor activation in astrocytoma cells: a potential role of c-Fos protein. Proc Natl Acad Sci USA. 1989;86(10):3891–3895.
  • Riekkinen M, Jäkälä P, Kejonen K, et al. The alpha2 agonist, clonidine, improves spatial working performance in Parkinson's disease. Neuroscience. 1999;92(3):983–989.
  • Marsh L, Biglan K, Gerstenhaber M, et al. Atomoxetine for the treatment of executive dysfunction in Parkinson's disease: a pilot open-label study. Mov Disord. 2009;24(2):277–282.
  • Alam M, Danysz W, Schmidt WJ, et al. Effects of glutamate and alpha2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol. 2009;240(2):198–207.
  • Lewitt PA. Norepinephrine: the next therapeutics frontier for Parkinson's disease. Transl Neurodegener. 2012;1(1):4.
  • Singh S, Dikshit M. Apoptotic neuronal death in Parkinson's disease: involvement of nitric oxide. Brain Res Rev. 2007;54(2):233–250.
  • Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord. 2013;28(6):715–724.
  • Koutsilieri E, Lutz MB, Scheller C. Autoimmunity, dendritic cells and relevance for Parkinson's disease. J Neural Transm. 2013;120(1):75–81.
  • Double KL. Neuronal vulnerability in Parkinson's disease. Parkinsonism Relat Disord. 2012;18(Suppl 1):S52–S54.
  • Gerlach M, Halley P, Riederer P, et al. The effect of piribedil on L-DOPA-induced dyskinesias in a rat model of Parkinson's disease: differential role of α(2) adrenergic mechanisms. J Neural Transm. 2013;120(1):31–36.
  • Ohtsuka C, Sasaki M, Konno K, et al. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson's disease using neuromelanin-sensitive MR imaging. Neurosci Lett. 2013;541:93–98.
  • Kiely AP, Asi YT, Kara E, et al. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy? Acta Neuropathol. 2013;125(5):753–769.
  • Sulzer D, Cassidy C, Horga G, et al. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease. NPJ Parkinsons Dis. 2018;4(1):1–11.
  • Wang J, Li Y, Huang Z, et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson's disease and its phenotypes. Eur J Neurol. 2018;25(7):949–e73.
  • Wakamatsu K, Tabuchi K, Ojika M, et al. Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus. J Neurochem. 2015;135(4):768–776.
  • Oliveira LM, Tuppy M, Moreira TS, et al. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson's disease model. Exp Neurol. 2017;293:172–180.
  • Oshima K, Tsuchiya K, Iritani S, et al. An autopsy case of senile dementia with pathological features of Parkinson's disease. No To Shinkei. 2004;56(7):603–606.
  • Sasaki S, Shirata A, Yamane K, et al. Parkin-positive autosomal recessive juvenile parkinsonism with alpha-synuclein-positive inclusions. Neurology. 2004;63(4):678–682.
  • Engelen M, Vanna R, Bellei C, et al. Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanicstructure. PLoS One. 2012;7(11):e48490.
  • Mendel T, Bertrand E, Szpak GM, et al. Complications of severe cerebral amyloid angiopathy in the course of dementia with Lewy bodies. Folia Neuropathol. 2010;48(4):293–299.
  • Kim H. Alpha-synuclein expression in patients with Parkinson's disease: a clinician's perspective. Exp Neurobiol. 2013;22(2):77–83.
  • Miyakawa S, Ogino M, Funabe S, et al. Lewy body pathology in a patient with a homozygous parkin deletion. Mov Disord. 2013;28(3):388–391.
  • Wakabayashi K, Tanji K, Mori F, et al. The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007;27(5):494–506.
  • Mori F, Nishie M, Kakita A, et al. Relationship among alpha-synuclein accumulation, dopamine synthesis, and neurodegeneration in Parkinson disease substantia nigra. J Neuropathol Exp Neurol. 2006;65(8):808–815.
  • Cullen KP, Grant LM, Kelm-Nelson CA, et al. Pink1 -/- rats show early-onset swallowing deficits and correlative brainstem pathology. Dysphagia. 2018;33(6):749–758.
  • Yao N, Wu Y, Zhou Y, et al. Lesion of the locus coeruleus aggravates dopaminergic neuron degeneration by modulating microglial function in mouse models of Parkinson's disease. Brain Res. 2015;1625:255–274.
  • Hou L, Zhang C, Wang K, et al. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation. Toxicology. 2017;380:1–10.
  • Taylor TN, Alter SP, Wang M, et al. Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology. 2014;76:97–105.
  • Guimarães J, Moura E, Vieira-Coelho MA, et al. Weight variation before and after surgery in Parkinson's disease: a noradrenergic modulation? Mov Disord. 2012;27(9):1078–1082.
  • O'Neill E, Harkin A. Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: implications for Parkinson's disease. Neural Regen Res. 2018;13(8):1332–1337.
  • Post MR, Lieberman OJ, Mosharov EV. Can interactions between α-synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson's disease? Front Neurosci. 2018;12:16.
  • Matthews KL, Chen CP, Esiri MM, et al. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol Psychiatry. 2002;51(5):407–416.
  • Weinshenker D. Functional consequences of locus coeruleus degeneration in Alzheimer's disease. Curr Alzheimer Res. 2008;5(3):342–345.
  • Hoogendijk WJ, Pool CW, Troost D, et al. Image analyser-assisted morphometry of the locus coeruleus in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Brain. 1995;118(1):131–143.
  • Clavaguera F, Lavenir I, Falcon B, et al. “Prion-like” templated misfolding in tauopathies. Brain Pathol. 2013;23(3):342–349.
  • Grudzien A, Shaw P, Weintraub S, et al. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging. 2007;28(3):327–335.
  • Herrmann N, Lanctôt KL, Eryavec G, et al. Noradrenergic activity is associated with response to pindolol in aggressive Alzheimer's disease patients. J Psychopharmacol. 2004;18(2):215–220.
  • Granholm EL, Panizzon MS, Elman JA, et al. Pupillary responses as a biomarker of early risk for Alzheimer's disease. J Alzheimers Dis. 2017;56(4):1419–1428.
  • Chalermpalanupap T, Weinshenker D, Rorabaugh J. Down but not out: the consequences of pretangle tau in the locus coeruleus. Neural Plast. 2017;2017:7829507.
  • Coradazzi M, Gulino R, Fieramosca F, et al. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis. Neurobiol Aging. 2016;48:93–102.
  • Strong R, Huang JS, Huang SS, et al. Degeneration of the cholinergic innervation of the locus ceruleus in Alzheimer's disease. Brain Res. 1991;542(1):23–28.
  • Kelly SC, He B, Perez SE, et al. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathol Commun. 2017;5(1):8.
  • Vermetten E, Bremner JD. Circuits and systems in stress. I. Preclinical studies. Depress Anxiety. 2002;15(3):126–147.
  • Thal DR, Rüb U, Orantes M, et al. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–1800.
  • Cui SY, Song JZ, Cui XY, et al. Intracerebroventricular streptozotocin-induced Alzheimer's disease-like sleep disorders in rats: role of the GABAergic system in the parabrachial complex. CNS Neurosci Ther. 2018;24:1241–1252.
  • Vicente MC, Almeida MC, Bícego KC, et al. Hypercapnic and hypoxic respiratory response during wakefulness and sleep in a streptozotocin model of Alzheimer's disease in rats. J Alzheimers Dis. 2018;65:1159–1174.
  • Yenkoyan K, Fereshetyan K, Matinyan S, et al. The role of monoamines in the development of Alzheimer's disease and neuroprotectiveeffect of a proline rich polypeptide. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:76–82.
  • Theofilas P, Ehrenberg AJ, Nguy A, et al. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging. 2018;61:1–12.
  • Ehrenberg AJ, Nguy AK, Theofilas P, et al. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer's disease. Neuropathol Appl Neurobiol. 2017;43(5):393–408.
  • Gulyás B, Brockschnieder D, Nag S, et al. The norepinephrine transporter (NET) radioligand (S,S)-[18F]FMeNER-D2 shows significant decreases in NET density in the human brain in Alzheimer's disease: a post-mortem autoradiographicstudy. Neurochem Int. 2010;56(6-7):789–798.
  • Chalermpalanupap T, Kinkead B, Hu WT, et al. Targeting norepinephrine in mild cognitive impairment and Alzheimer's disease. Alzheimers Res Ther. 2013;5(2):21.
  • Femminella GD, Rengo G, Pagano G, et al. β-adrenergic receptors and G protein-coupled receptor kinase-2 in Alzheimer's disease: a new paradigm for prognosis and therapy? J Alzheimers Dis. 2013;34(2):341–347.
  • Azkona G, Amador-Arjona A, Obradors-Tarragó C, et al. Characterization of a mouse model overexpressing beta-site APP-cleaving enzyme 2 reveals a new role for BACE2. Genes Brain Behav. 2010;9(2):160–172.
  • Attems J, Thal DR, Jellinger KA. The relationship between subcortical tau pathology and Alzheimer's disease. Biochm Soc Trans. 2012;40(4):711–715.
  • Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med. 2012;2(1):a006346.
  • Heneka MT, Nadrigny F, Regen T, et al. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA. 2010;107(13):6058–6063.
  • Leanza G, Gulino R, Zorec R. Noradrenergic hypothesis linking neurodegeneration-based cognitive decline and astroglia. Front Mol Neurosci. 2018;11:254.
  • Heneka MT, Ramanathan M, Jacobs AH, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci. 2006;26(5):1343–1354.
  • Heneka MT, Galea E, Gavriluyk V, et al. Noradrenergic depletion potentiates beta -amyloid-induced cortical inflammation: implications for Alzheimer's disease. J Neurosci. 2002;22(7):2434–2442.
  • Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem. 2016;139(Suppl 2):154–178.
  • Jardanhazi-Kurutz D, Kummer MP, Terwel D, et al. Distinct adrenergic system changes and neuroinflammation in response to induced locus ceruleus degeneration in APP/PS1 transgenic mice. Neuroscience. 2011;176:396–407.
  • Song JH, Yu JT, Tan L. Brain-derived neurotrophic factor in Alzheimer's disease: risk, mechanisms, and therapy. Mol Neurobiol. 2015;52(3):1477–1493.
  • Braun DJ, Kalinin S, Feinstein D. Conditional depletion of hippocampal brain-derived neurotrophic factor exacerbates neuropathology in a mouse model of Alzheimer's disease. ASN Neuro. 2017;9(2):175909141769616.
  • Llorens F, Thüne K, Andrés-Benito P, et al. MicroRNA expression in the locus coeruleus, entorhinal cortex, and hippocampus at early and middle stages of Braak neurofibrillary tangle pathology. J Mol Neurosci. 2017;63(2):206–215.
  • Sasaki M, Shibata E, Tohyama K, et al. Monoamine neurons in the human brain stem: anatomy, magnetic resonance imaging findings, and clinical implications. Neuroreport. 2008;19(17):1649–1654.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.