478
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Neuroprotective effects of mitoquinone and oleandrin on Parkinson’s disease model in zebrafish

, , , , , ORCID Icon, & show all
Pages 574-582 | Received 29 Apr 2019, Accepted 21 Nov 2019, Published online: 04 Dec 2019

References

  • Zhang ZX, Roman GC, Hong Z, et al. Parkinson’s disease in China: prevalence in Beijing, Xian and Shanghai. Lancet. 2005;365(9459):595–597.
  • Weintraub D, Comella CL, Horn S. Parkinson’s disease, part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care. 2008;14:40–48.
  • Bernheimer H, Birkmayer W, Hornykiewicz O, et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20(4):415–455.
  • Cookson MR, Hardy J, Lewis PA. Genetic neuropathology of Parkinson’s disease. Int J Clin Exp Pathol. 2008;1(3):217–231.
  • Xiong N, Long X, Xiong J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol. 2012;42(7):613–632.
  • Burn DJ, Mark MH, Playford ED, et al. Parkinson’s disease in twins studied with 18F-dopa and positron emission tomography. Neurology. 1992;42(10):1894–1900.
  • Dickson DW. Neuropathology. In: Pahwa R, Lyons KE, editors. Handbook of Parkinson’s disease. 4th ed. New York: CRC Press; 2007. p. 195–208.
  • Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47(1):629–656.
  • Hong DS, Henary H, Falchook GS, et al. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-κΒ and p70s6k, in patients with advanced solid tumors. Invest New Drugs. 2014;32(6):1204–1212.
  • Van Kanegan MJ, He DN, Dunn DE, et al. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin. J Neurosci. 2014;34(3):963–968.
  • Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981;291(5813):293–296.
  • Doğanli C, Oxvig C, Lykke-Hartmann K. Zebrafish as a novel model to assess Na+/K+-ATPase-related neurological disorders. Neurosci Biobehav Rev. 2013;37(10):2774–2787.
  • Holzschuh J, Ryu S, Aberger F, et al. Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech Dev. 2001;101(1–2):237–243.
  • Ünal İ, Emekli-Alturfan E. Fishing for Parkinson’s disease: a review of the literature. J Clin Neurosci. 2019;62:1–6.
  • Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol. 2004;26(6):857–864.
  • Wang Y, Liu W, Yang J, et al. Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology. 2017;58:103–109.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.
  • Yagi K. Assay for blood plasma or serum. Method Enzymol. 1984;105:328–331.
  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62–71.
  • Mylorie AA, Collins H, Umbles C, et al. Erythrocyte superoxide dismutase activity and other parameters of cupper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512–520.
  • Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods. 2001;25(4):402–408.
  • Dreiem A, Gertz CC, Seegal RF. The effects of methylmercury on mitochondrial function and reactive oxygen species formation in rat striatal synaptosomes are age-dependent. Toxicol Sci. 2005;87(1):156–162.
  • Makhija DT, Jagtap AG. Studies on sensitivity of zebrafish as a model organism for Parkinson’s disease: comparison with rat model. J Pharmacol Pharmacother. 2014;5:39–46.
  • Khotimah H, Sumitro SB, Widodo MA. Zebrafish Parkinson’s model: rotenone decrease motility, dopamine, and increase α-synuclein aggregation and apoptosis of zebrafish brain. Int J PharmTech Res. 2015;8:614–621.
  • Santiago RM, Barbieiro J, Lima MM, et al. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):1104–1114.
  • Solesio ME, Prime TA, Logan A, et al. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim Biophys Acta. 2013;1832(1):174–182.
  • Ghosh A, Chandran K, Kalivendi SV, et al. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radic Biol Med. 2010;49(11):1674–1684.
  • Hatano T, Kubo S, Sato S, et al. Pathogenesis of familial Parkinson’s disease: new insights based on monogenic forms of Parkinson’s disease. J Neurochem. 2009;111(5):1075–1093.
  • Ariga H, Takahashi-Niki K, Kato I, et al. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev. 2013;2013:1–9.
  • Sarath Babu N, Murthy CLN, Kakara S, et al. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine induced Parkinson’s disease in zebrafish. Proteomics. 2016;16(9):1407–1420.
  • Howells DW, Porritt M, Wong JYF, et al. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol. 2000;166(1):127–135.
  • Milanese C, Sager JJ, Bai Q, et al. Hypokinesia and reduced dopamine levels in zebrafish lacking β- and γ1-synucleins. J Biol Chem. 2012;287(5):2971–2983.
  • Zhang L, Dawson VL, Dawson TM. Role of nitric oxide in Parkinson’s disease. Pharmacol Ther. 2006;109(1–2):33–41.
  • Bove J, Prou D, Perier C, et al. Toxin-induced models of Parkinson’s disease. Neurotherapeutics. 2005;2:484–494.
  • Zibbu G, Batra A. A review on chemistry and pharmacological activity of Nerium oleander L. J Chem Pharm Res. 2010;2:351–358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.