1,218
Views
78
CrossRef citations to date
0
Altmetric
Reviews

3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases

ORCID Icon & ORCID Icon
Pages 1047-1062 | Received 25 Mar 2019, Accepted 09 Dec 2019, Published online: 21 Jan 2020

References

  • Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53(6):4094–4125.
  • Ho E, Karimi Galougahi K, Liu C-C, et al. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013;1(1):483–491.
  • Cruz DF, Fardilha M. Relevance of peroxynitrite formation and 3-nitrotyrosine on spermatozoa physiology. Porto Biomed J. 2016;1(4):129–135.
  • Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine‐containing proteins. Mass Spec Rev. 2015;34(4):423–448.
  • Kim GH, Kim JE, Rhie SJ, et al. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325–340.
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795.
  • Paloczi J, Varga ZV, Hasko G, et al. Neuroprotection in oxidative stress-related neurodegenerative diseases: Role of endocannabinoid system modulation. Antioxid Redox Signal. 2018;29:75–108.
  • Butterfield DA, Sultana R. Methionine-35 of aβ(1-42): importance for oxidative stress in Alzheimer disease. J Amino Acids. 2011;2011:1–198430.
  • Swomley AM, Förster S, Keeney JT, et al. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta Mol Basis Dis. 2014;1842(8):1248–1257.
  • Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. J Biomed Biotechnol. 2002;2(3):120–123.
  • Koellhoffer EC, McCullough LD, Ritzel RM. Old maids: aging and its impact on microglia function. IJMS. 2017;18(4):769.
  • Ojala JO, Sutinen EM. The role of interleukin-18, oxidative stress and metabolic syndrome in Alzheimer’s disease. J Clin Med. 2017;6:55.
  • Leszek J, E Barreto G, Gasiorowski K, et al. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets. 2016;15:329–336.
  • Majkutewicz I, Kurowska E, Podlacha M, et al. Age-dependent effects of dimethyl fumarate on cognitive and neuropathological features in the streptozotocin-induced rat model of Alzheimer’s disease. Brain Res. 2018;1686:19–33.
  • Robitsek J, Ratner MH, Stewart T, et al. Combined administration of levetiracetam and valproic acid attenuates age‐related hyperactivity of CA3 place cells, reduces place field area, and increases spatial information content in aged rat hippocampus. Hippocampus. 2015;25(12):1541–1555.
  • Habas A, Hahn J, Wang X, et al. Neuronal activity regulates astrocytic Nrf2 signaling. PNAS. 2013;110(45):18291–18296.
  • Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A, et al. Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death Differ. 2015;22(11):1877–1889.
  • Bolaños JP. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem. 2016;139:115–125.
  • Zhang H, Davies KJ, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radical Biol Med. 2015;88:314–336.
  • Syslová K, Böhmová A, Mikoška M, et al. Multimarker screening of oxidative stress in aging. Oxid Med Cell Longevity. 2014;2014:1–14.
  • Ma L, Cao TT, Kandpal G, et al. Genome-wide microarray analysis of the differential neuroprotective effects of antioxidants in neuroblastoma cells overexpressing the familial Parkinson’s disease α-synuclein A53T mutation. Neurochem Res. 2010;35(1):130–142.
  • Jami M-S, Salehi-Najafabadi Z, Ahmadinejad F, et al. Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress. Neurochem Int. 2015;90:134–141.
  • Ariga H, Takahashi-Niki K, Kato I, et al. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longevity. 2013;2013:1–9.
  • Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson's disease. Mov Disord. 2011;26(6):1049–1055.
  • Segura‐Aguilar J, Paris I, Muñoz P, et al. Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem. 2014;129:898–915.
  • Xiong N, Xiong J, Khare G, et al. Edaravone guards dopamine neurons in a rotenone model for Parkinson's disease. PloS One. 2011;6(6):e20677.
  • Blesa J, Trigo-Damas I, Quiroga-Varela A, et al. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:91.
  • Schapira AH, Olanow CW, Greenamyre JT, et al. Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet. 2014;384(9942):545–555.
  • Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–273.
  • Fernández E, García-Moreno J-M, Martín de Pablos A, et al. May the evaluation of nitrosative stress through selective increase of 3-nitrotyrosine proteins other than nitroalbumin and dominant tyrosine-125/136 nitrosylation of serum α-synuclein serve for diagnosis of sporadic Parkinson's disease? Antioxid Redox Signal. 2013;19(9):912–918.
  • Bozzo F, Mirra A, Carrì M. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett. 2017;636:3–8.
  • Pollari E, Goldsteins G, Bart G, et al. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci. 2014;8:131.
  • Carrì MT, Valle C, Bozzo F, et al. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci. 2015;9:41.
  • Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:173.
  • Weiduschat N, Mao X, Hupf J, et al. Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci Lett. 2014;570:102–107.
  • Iguchi Y, Katsuno M, Takagi S, et al. Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiol Dis. 2012;45(3):862–870.
  • Duan W, Li X, Shi J, et al. Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell. Neuroscience. 2010;169(4):1621–1629.
  • Braun RJ, Sommer C, Carmona-Gutierrez D, et al. Neurotoxic TDP-43 triggers mitochondrion-dependent programmed cell death in yeast. J Biol Chem. 2011;286(22):19958–19972.
  • Zhan L, Xie Q, Tibbetts RS. Opposing roles of p38 and JNK in a Drosophila model of TDP-43 proteinopathy reveal oxidative stress and innate immunity as pathogenic components of neurodegeneration. Human Mol Genet. 2014;24(3):757–772.
  • Guareschi S, Cova E, Cereda C, et al. An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. PNAS. 2012;109(13):5074–5079.
  • Cohen TJ, Hwang AW, Unger T, et al. Redox signalling directly regulates TDP‐43 via cysteine oxidation and disulphide cross‐linking. EMBO J. 2012;31(5):1241–1252.
  • Shodai A, Morimura T, Ido A, et al. Aberrant assembly of RNA-recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein-43 (TDP-43). J Biol Chem. 2013;288(21):14886–14905.
  • Baron DM, Kaushansky LJ, Ward CL, et al. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Mol Neurodegeneration. 2013;8(1):30.
  • Bosco DA, Lemay N, Ko HK, et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Human Mol Genet. 2010;19(21):4160–4175.
  • Colombrita C, Zennaro E, Fallini C, et al. TDP‐43 is recruited to stress granules in conditions of oxidative insult. J Neurochem. 2009;111(4):1051–1061.
  • Atkin JD, Farg MA, Walker AK, et al. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis. 2008;30(3):400–407.
  • Farg MA, Soo KY, Walker AK, et al. Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol Aging. 2012;33(12):2855–2868.
  • Walker AK, Soo KY, Sundaramoorthy V, et al. ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PloS One. 2013;8(11):e81170.
  • Lopez-Gonzalez R, Lu Y, Gendron TF, et al. Poly (GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron. 2016;92(2):383–391.
  • Kiskinis E, Sandoe J, Williams LA, et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell. 2014;14(6):781–795.
  • Kumar A, Ratan RR. Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. JHD. 2016;5(3):217–237.
  • Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73–82.
  • Langbehn DR, Brinkman RR, Falush D, et al. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clin Genet. 2004;65(4):267–277.
  • MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993;72(6):971–983.
  • Sorolla MA, Reverter-Branchat G, Tamarit J, et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biol Med. 2008;45(5):667–678.
  • Stack EC, Matson WR, Ferrante RJ. Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants. Ann N Y Acad Sci. 2008;1147(1):79–92.
  • Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem. 2014;130(3):328–350.
  • Rosas HD, Chen YI, Doros G, et al. Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol. 2012;69(7):887–893.
  • Sena LA, Li S, Jairaman A, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225–236.
  • Wheeler ML, DeFranco AL. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. JI. 2012;189(9):4405–4416.
  • Brazier MW, Wedd AG, Collins SJ. Antioxidant and metal chelation-based therapies in the treatment of prion disease. Antioxidants. 2014;3(2):288–308.
  • Karuppagounder SS, Alim I, Khim SJ, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8(328):328ra29–328ra329.
  • Fox J, Connor T, Stiles M, et al. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J Biol Chem. 2011;286(20):18320–18330.
  • Mitomi Y, Nomura T, Kurosawa M, et al. Post-aggregation oxidation of mutant Huntingtin controls the interactions between aggregates. J Biol Chem. 2012;287(41):34764–34775.
  • Xiao G, Fan Q, Wang X, et al. Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. PNAS. 2013;110(37):14995–15000.
  • Rubinsztein DC, Carmichael J. Huntington's disease: molecular basis of neurodegeneration. Expert Rev Mol Med. 2003;5(20):1–21.
  • Kovtun IV, Liu Y, Bjoras M, et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature. 2007;447(7143):447–452.
  • Jarem DA, Wilson NR, Delaney S. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence. Biochemistry. 2009;48(28):6655–6663.
  • Kovacs GG, Budka H. Prion diseases: from protein to cell pathology. Am J Pathol. 2008;172(3):555–565.
  • Chen C, Dong X-P. Epidemiological characteristics of human prion diseases. Infect Dis Poverty. 2016;5(1):47.
  • Chen C, Wang J-C, Shi Q, et al. Analyses of the survival time and the influencing factors of Chinese patients with prion diseases based on the surveillance data from 2008–2011. PloS One. 2013;8(5):e62553.
  • Brown DR. Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol. 2005;43:229–243.
  • Tahir W, Zafar S, Llorens F, et al. Molecular alterations in the cerebellum of sporadic Creutzfeldt–Jakob disease subtypes with DJ-1 as a key regulator of oxidative stress. Mol Neurobiol. 2018;55(1):517–537.
  • Bourgognon J-M, Spiers JG, Scheiblich H, et al. Alterations in neuronal metabolism contribute to the pathogenesis of prion disease. Cell Death Differ. 2018;25:1408–1425.
  • Radi R. Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res. 2013;46(2):550–559.
  • Seeley K, Fertig A, Dufresne C, et al. Evaluation of a method for nitrotyrosine site identification and relative quantitation using a stable isotope-labeled nitrated spike-in standard and high resolution Fourier transform MS and MS/MS analysis. IJMS. 2014;15(4):6265–6285.
  • Hodara R, Norris EH, Giasson BI, et al. Functional consequences of a-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem. 2004;279(46):47746–47753.
  • Lennon CW, Cox HD, Hennelly SP, et al. Probing structural differences in prion protein isoforms by tyrosine nitration. Biochemistry. 2007;46(16):4850–4860.
  • Danielson SR, Held JM, Schilling B, et al. Preferentially increased nitration of α-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem. 2009;81(18):7823–7828.
  • Tuttle MD, Comellas G, Nieuwkoop AJ, et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol. 2016;23:409.
  • Gonos ES, Kapetanou M, Sereikaite J, et al. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging. 2018;10(5):868–901.
  • Ara J, Przedborski S, Naini AB, et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). PNAS. 1998;95(13):7659–7663.
  • Reynolds MR, Berry RW, Binder LI. Site-specific nitration and oxidative dityrosine bridging of the τ protein by peroxynitrite: implications for Alzheimer's disease. Biochemistry. 2005;44(5):1690–1700.
  • Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–934.
  • Demicheli V, Moreno DM, Jara GE, et al. Mechanism of the reaction of human manganese superoxide dismutase with peroxynitrite: nitration of critical tyrosine 34. Biochemistry. 2016;55(24):3403–3417.
  • Oneda H, Inouye K. Effect of nitration on the activity of bovine erythrocyte Cu, Zn-superoxide dismutase (BESOD) and a kinetic analysis of its dimerization-dissociation reaction as examined by subunit exchange between the native and nitrated BESODs. J Biochem. 2003;134(5):683–690.
  • Jiao K, Mandapati S, Skipper PL, et al. Site-selective nitration of tyrosine in human serum albumin by peroxynitrite. Anal Biochem. 2001;293(1):43–52.
  • Zheng L, Settle M, Brubaker G, et al. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem. 2005;280(1):38–47.
  • Liu B, Tewari AK, Zhang L, et al. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochim Biophys Acta Proteins Proteomics. 2009;1794(3):476–485.
  • Kummer MP, Hermes M, Delekarte A, et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron. 2011;71(5):833–844.
  • Sultana R, Poon HF, Cai J, et al. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis. 2006;22(1):76–87.
  • Reed TT, Pierce WM, Jr, Turner DM, et al. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J Cell Mol Med. 2009;13(8b):2019–2029.
  • Sacksteder CA, Qian W-J, Knyushko TV, et al. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry. 2006;45(26):8009–8022.
  • Nardo G, Pozzi S, Mantovani S, et al. Nitroproteomics of peripheral blood mononuclear cells from patients and a rat model of ALS. Antioxid Redox Signaling. 2009;11:1559–1567.
  • de M Bandeira S, da Fonseca LJS, da S Guedes G, et al. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. IJMS. 2013;14:3265–3284.
  • Sengupta S, Bhattacharjee A. Dynamics of protein tyrosine nitration and denitration: a review. J Proteo Genomics. 2016;1:105.
  • Teixeira D, Fernandes R, Prudêncio C, et al. 3-Nitrotyrosine quantification methods: current concepts and future challenges. Biochimie. 2016;125:1–11.
  • Bryan NS, Grisham MB. Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biol Med. 2007;43(5):645–657.
  • Surmeli NB, Litterman NK, Miller A-F, et al. Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase. Evidence of a role for the carbonate radical anion. J Am Chem Soc. 2010;132(48):17174–17185.
  • Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288(37):26464–26472.
  • Yeo W-S, Lee S-J, Lee J-R, et al. Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Rep. 2008;41(3):194–203.
  • Shao B, Bergt C, Fu X, et al. Tyrosine 192 in apolipoprotein AI is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J Biol Chem. 2005;280(7):5983–5993.
  • Bandookwala M, Thakkar D, Sengupta P. Advancements in the analytical quantification of nitroxidative stress biomarker 3-nitrotyrosine in biological matrices. Crit Rev Anal Chem. 2019;1–25.
  • Giustarini D, Milzani A, Dalle-Donne I, et al. Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies. J Chromatogr B. 2007;851(1–2):124–139.
  • Tsikas D. Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino acids. 2012;42(1):45–63.
  • Ohshima H, Friesen M, Brouet I, et al. Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem Toxicol. 1990;28(9):647–652.
  • Blanchard-Fillion B, Prou D, Polydoro M, et al. Metabolism of 3-nitrotyrosine induces apoptotic death in dopaminergic cells. J Neurosci. 2006;26(23):6124–6130.
  • Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2017;18(7):735–738.
  • Tasset I, Sánchez-López F, Agüera E, et al. NGF and nitrosative stress in patients with Huntington's disease. J Neurol Sci. 2012;315(1–2):133–136.
  • Guentchev M, Voigtländer T, Haberler C, et al. Evidence for oxidative stress in experimental prion disease. Neurobiol Dis. 2000;7(4):270–273.
  • Brown DR, Qin K, Herms JW, et al. The cellular prion protein binds copper in vivo. Nature. 1997;390(6661):684–687.
  • Hoelzl C, Knasmüller S, Wagner KH, et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res. 2010;54:1722–1733.
  • Kim C-Y, Lee C, Park GH, et al. Neuroprotective effect of epigallocatechin-3-gallate against β-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity. Arch Pharm Res. 2009;32(6):869–881.
  • Mokhtari Z, Baluchnejadmojarad T, Nikbakht F, et al. Riluzole ameliorates learning and memory deficits in Aβ25-35-induced rat model of Alzheimer’s disease and is independent of cholinoceptor activation. Biomed Pharmacother. 2017;87:135–144.
  • Yu L, Wang S, Chen X, et al. Orientin alleviates cognitive deficits and oxidative stress in Aβ1–42-induced mouse model of Alzheimer's disease. Life Sci. 2015;121:104–109.
  • Kim E-A, Cho C, Kim D, et al. Antioxidative effects of ethyl 2-(3-(benzo [d] thiazol-2-yl) ureido) acetate against amyloid β-induced oxidative cell death via NF-κB, GSK-3β and β-catenin signaling pathways in cultured cortical neurons. Free Radical Res. 2015;49(4):411–421.
  • Modi KK, Roy A, Brahmachari S, et al. Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of Alzheimer’s disease. PloS One. 2015;10(6):e0130398.
  • Lee HE, Kim DH, Park SJ, et al. Neuroprotective effect of sinapic acid in a mouse model of amyloid β1–42 protein-induced Alzheimer's disease. Pharmacol Biochem Behavior. 2012;103(2):260–266.
  • Campolo M, Casili G, Biundo F, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson's disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signaling. 2017;27:453–471.
  • Ghosh A, Langley MR, Harischandra DS, et al. Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J Neuroimmune Pharmacol. 2016;11(2):259–278.
  • Tong H, Zhang X, Meng X, et al. Simvastatin inhibits activation of NADPH oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson disease models. Front Mol Neurosci. 2018;11.
  • Zhang L, Hao J, Zheng Y, et al. Fucoidan protects dopaminergic neurons by enhancing the mitochondrial function in a rotenone-induced rat model of Parkinson’s disease. A&D. 2018;9(4):590.
  • Cordaro M, Siracusa R, Crupi R, et al. 2-Pentadecyl-2-oxazoline reduces neuroinflammatory environment in the MPTP model of Parkinson disease. Mol Neurobiol. 2018;55(12):1–16.
  • Qin J, Wu M, Yu S, et al. Pyrroloquinoline quinone-conferred neuroprotection in rotenone models of Parkinson’s disease. Toxicol Lett. 2015;238:70–82.
  • Giacoppo S, Rajan TS, De Nicola GR, et al. The isothiocyanate isolated from Moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute Parkinson's disease. Rejuvenation Res. 2017;20(1):50–63.
  • Liang L-P, Huang J, Fulton R, et al. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease. Toxicol Appl Pharmacol. 2017;326:34–42.
  • Lee M, McGeer EG, McGeer PL. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol Aging. 2016;46:113–123.
  • Ito H, Wate R, Zhang J, et al. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp Neurol. 2008;213(2):448–455.
  • Zhang Y, Li H, Yang C, et al. Treatment with hydrogen-rich saline delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurochem Res. 2016;41(4):770–778.
  • Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, et al. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience. 2005;135(2):463–474.
  • Ryu JK, Kim SU, McLarnon JG. Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington's disease. Exp Neurol. 2004;187(1):150–159.
  • Tohgi H, Abe T, Yamazaki K, et al. Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci Lett. 1999;269(1):52–54.
  • Ryberg H, Söderling A-S, Davidsson P, et al. Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer’s disease. Neurochem Int. 2004;45(1):57–62.
  • Ahmed N, Ahmed U, Thornalley PJ, et al. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment. J Neurochem. 2005;92(2):255–263.
  • Tohgi H, Abe T, Yamazaki K, et al. Remarkable increase in cerebrospinal fluid 3‐nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1999;46(1):129–131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.