81
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Investigation on beneficial role of l-carnosine in neuroprotective mechanism of ischemic postconditioning in mice: possible role of histidine histamine pathway

, , &
Pages 983-998 | Received 04 Apr 2019, Accepted 26 Nov 2019, Published online: 05 Feb 2020

References

  • Busl KM, Greer DM. Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. Neurorehabilitation. 2010; 26(1):5–13.
  • Lopez MS, Dempsey RJ, Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int. 2015;89:75–82.
  • Shioda S, Nakamachi T. PACAP as a neuroprotective factor in ischemic neuronal injuries. Peptides. 2015;16–22.
  • Bramlett HM, Dalton Deitrich W. Pathophysiology of cerebral ischemia and brain trauma. J Cereb Blood Flow Metab. 2004;133–150.
  • Nagahiro S, Uno M, Sato K, et al. Athophysiology and treatment of cerebral ischemia. J Med Invest. 2011;235–240.
  • Zhang Y, Fan D, Zhang N. The relationship between serum asymmetric dimethylarginine and ABCD2 score in transient ischemic attack patients]. Zhonghua Nei Ke Za Zhi. 2014;53(11):876–879.
  • Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Circ Heart. 2003;285:H579–H588.
  • Ren C, Gao X, Steinberg GK, et al. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience. 2008;151(4):1099–1103.
  • Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, et al. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 2015;3:9–278.
  • Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35(2):354–356.
  • Wada H, Inagaki N, Itowi N, et al. Histaminergic neuron system in the brain: distribution and possible functions. Brain Res Bull. 1991;27(3-4):367–370.
  • Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637–672.
  • Garbarg M, Barbin G, Bischoff S, et al. Dual localization of histamine in an ascending neuronal pathway and in non-neuronal cells evidenced by lesions in the lateral hypothalamic area. Brain Res. 1976;106(2):333–348.
  • Nguyen T, Shapiro DA, George SR, et al. Discovery of a novel member of the histamine receptor family. Mol Pharmacol.. 2001;59(3):427–433.
  • Hu WW, Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci. 2012;3(4):238–247.
  • Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci.. 2003;4(2):121–130.  
  • Adachi N, Liu K, Arai T. Prevention of brain infarction by postischemic administration of histidine in rats. Brain Res. 2005;1039(1-2):220–223.  
  • Maslinski C, Fogel WA. Catabolism of Histamine. Handbook of experimental pharmacology. Histamine and histamine antagonists. Berlin, Heidelberg: Springer; 1991. p. 165–189.
  • Hu W, Xu L, Pan J, et al. Effect of cerebral ischemia on brain mast cells in rats. Brain Res. 2004;1019(1-2):275–280.
  • Hipkiss AR, Cartwright SP, Bromley C, et al. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem Cent J. 2013;7(1):38.
  • Mizuno D, Kawahara M. Carnosine: a possible drug for vascular dementia. J Vasc Med Surg. 2014;2:146.
  • Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803–1845.
  • Gariballa AE, Sinclair AJ. Carnosine: physiological properties and therapeutic potential. Age Age. 2000;29(3):207–210.
  • Himori N, Moreau JL, Martin JR. Cerebral ischemia decreases the behavioral effects and mortality rate elicited by activation of NMDA receptors in mice. Neuropharmacology. 1991;30(11):1179–1186.
  • Kaur H, Jaggi AS, Singh N. Modulation of neuroprotective effect of ischemic post-conditioning by dichlorobenzamil, a Na +/Ca 2+ exchanger inhibitor in mice. Biol Pharm Bull. . 2010;33(4):585–591.
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.
  • Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc. 1957;46(3):208–209.
  • Kaur C, Ling EA. Blood brain barrier in hypoxic-ischemic conditions. CNR. 2008;5(1):71–81.
  • Feeney DM, Boyeson MG, Linn RT, et al. Responses to cortical injury: I. Methodology and local effects of contusions in rats. Brain Res. 1981;211(1):67–77.
  • Gupta R, Singh M, Sharma A. Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol Res. 2003; 48(2):209–215.
  • Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986; 17(3):472–476.
  • Ellman GL, Courtney KD, Andres VJ, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.
  • Voss G, Sachsse K. Red cell and plasma cholinesterase activities in microsamples of human and animal blood determined simultaneously by a modified acetylthiocholine-DTNB procedure. Toxicol Appl Pharmacol. 1970; 16(3):764–772.
  • Ohokawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358.
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963; 61:882–888.
  • Green PS, Mendez AJ, Jacob JS, et al. Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. J Neurochem. 2004;90(3):724–733.
  • Barone FC, Hillegass LM, Price WJ, et al. Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. J Neurosci Res. 1991;29(3):336–345.
  • Bochelen D, Rudin M, Sauter A. Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury. J Pharmacol Exp Ther.1999;288(2):653–659.
  • Hill RA, Tong L, Yuan P, et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87(1):95–110.
  • Gulati P, Singh N. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioall Sci.. 2014;6(4):233–240.
  • Sun J, Wang F, Li H, et al. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. Biomed Res Int. 2015;12–23.
  • Harukuni I, Bhardwaj I. Mechanisms of brain injury after global cerebral ischemia. NeurolClin. 2006;24:1–21.
  • Boyer PD, Chance B, Ernster L, et al. Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem. 1977;46(1):955–966.
  • Sugawara T, Fujimura M, Noshita N, et al. Neuronal death/survival signaling pathways in cerebral ischemia. Neurotherapeutics.. 2004;1(1):17–25.
  • Zhao Y, Xiao M, He W, et al. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits. Neuropsychiatr Dis Treat. 2015;11:507–516.
  • Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide, general properties and effects of hyperbaric oxygen. Biochem J. 1973;134(3):707–716.
  • Goto S, Xue R, Sugo N, et al. Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke. 2002;33(4):1101–1106.
  • Bhardwaj A, Northington FJ, Ichord RN, et al. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats. Stroke. 1997;28(4):850–856.
  • Bhardwaj A, Northington FJ, Martin LJ, et al. Characterization of metabotropic glutamate receptor-mediated nitric oxide production in vivo. J Cereb Blood Flow Metab. 1997;17(2):153–160.
  • Abe H. Role of histidine–related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc). 2000;65(7):757–765.
  • Bonfanti L, Peretto P, De Marchis S, et al. Carnosine–related dipeptides in the mammalian brain. Prog Neurobiol. 1999;59:333–353.
  • Bauer K. Carnosine and homocarnosine, the forgotten, enigmatic peptides of the brain. Neurochem Res. . 2005;30(10):1339–1345.
  • Li L, Deng B, Wang S, et al. Asynchronous therapy targeting Nogo-A enhances neurobehavioral recovery by reducing neuronal loss and promoting neurite outgrowth after cerebral ischemia in mice. J Drug Target. 2015;1–11.
  • Brown CE. Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J Theor Biol. 1981;88(2):245–256.
  • Dai H, Fu Q, Shen Y, et al. The histamine H3 receptor antagonist clobenpropit enhances GABA release to protect against NMDA induced excitotoxicity through the cAMP/protein kinase A pathway in cultured cortical neurons. Eur J Pharmacol. 2007;563(1-3):117–123. − 
  • Akdis CA, Simons FE. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol. 2006;533(1-3):69–76.
  • Packard KA, Khan MM. Effects of histamine on Th1/Th2 cytokine balance. Int. Immunopharmacol. 2003;3(7):909–920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.