369
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Identification of dysregulated genes and pathways of different brain regions in Alzheimer’s disease

&
Pages 1082-1094 | Received 01 Jun 2019, Accepted 14 Jan 2020, Published online: 05 Feb 2020

References

  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329–344. [published Online First: 2010/01/29]
  • Serrano-Pozo A, Frosch MP, Masliah E, et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect Med. 2011;1(1):a006189–a006189. [published Online First: 2012/01/10]
  • Liu SL, Wang C, Jiang T, et al. The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol. 2016;53(7):4328–4342.
  • Gordon-Weeks PR. The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer’s disease. Brain Res Bull. 2016;126(Pt 3):293–299.
  • Wu Y, Ly PT, Song W. Aberrant expression of RCAN1 in Alzheimer’s pathogenesis: a new molecular mechanism and a novel drug target. Mol Neurobiol. 2014;50(3):1085–1097.
  • Gao L, Jiang T, Yao X, et al. TREM2 and the progression of Alzheimer’s disease. CNR. 2017;14(2):177–183.
  • Jay TR, Hirsch AM, Broihier ML, et al. Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J Neurosci. 2017;37(3):637–647.
  • Perez SE, Nadeem M, He B, et al. Neocortical and hippocampal TREM2 protein levels during the progression of Alzheimer’s disease. Neurobiol Aging. 2017;54:133–143.
  • Uddin MS, Mamun AA, Labu ZK, et al. Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol. 2019;234(6):8094–8112. [published Online First: 2018/10/27]
  • Hossain MF, Uddin MS, Uddin GMS, et al. Melatonin in Alzheimer’s disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol Neurobiol. 2019;56(12):8255–8276. [published Online First: 2019/06/19]
  • Uddin MS, Kabir MT. Emerging signal regulating potential of genistein against Alzheimer’s disease: a promising molecule of interest. Front Cell Dev Biol. 2019;7:197. [published Online First: 2019/10/18]
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2012;41(D1):D991–5. [published Online First: 2012/11/30]
  • Blair LJ, Nordhues BA, Hill SE, et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest. 2013;123(10):4158–4169. [published Online First: 2013/09/04]
  • Miller JA, Woltjer RL, Goodenbour JM, et al. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 2013;5(5):48. [published Online First: 2013/05/28]
  • Hokama M, Oka S, Leon J, et al. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama study. Cerebral cortex (New York, NY: 1991). 2014;24(9):2476–2488. [published Online First: 2013/04/19]
  • Blalock EM, Buechel HM, Popovic J, et al. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease. J Chem Neuroanat. 2011;42(2):118–126. [published Online First: 2011/07/16]
  • Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 2018;99(1):64–82 e7. [published Online First: 2018/06/26]
  • Blalock EM, Geddes JW, Chen KC, et al. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. PNAS. 2004;101(7):2173–2178. [published Online First: 2004/02/11]
  • Tan MG, Chua WT, Esiri MM, et al. Genome wide profiling of altered gene expression in the neocortex of Alzheimer’s disease. J Neurosci Res. 2010;88(6):1157–1169. [published Online First: 2009/11/26]
  • Naughton BJ, Duncan FJ, Murrey DA, et al. Blood genome-wide transcriptional profiles reflect broad molecular impairments and strong blood-brain links in Alzheimer’s disease. JAD. 2014;43(1):93–108. [published Online First: 2014/08/01]
  • Sood S, Gallagher IJ, Lunnon K, et al. A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. Genome Biol. 2015;16(1):185. [published Online First: 2015/09/08]
  • Marot G, Foulley JL, Mayer CD, et al. Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics (Oxford, England). 2009;25(20):2692–2699. [published Online First: 2009/07/25]
  • Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 2012;40(W1):W478–83. [published Online First: 2012/05/11]
  • Chatr-Aryamontri A, Oughtred R, Boucher L, et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017;45(D1):D369–D79. [published Online First: 2016/12/17]
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. [published Online First: 2003/11/05]
  • Lee HM, Sugino H, Aoki C, et al. Underexpression of mitochondrial-DNA encoded ATP synthesis-related genes and DNA repair genes in systemic lupus erythematosus. Arthritis Res Ther. 2011;13(2):R63. [published Online First: 2011/04/19]
  • Grabinger T, Bode KJ, Demgenski J, et al. Inhibitor of apoptosis protein-1 regulates tumor necrosis factor-mediated destruction of intestinal epithelial cells. Gastroenterology. 2017;152(4):867–879. [published Online First: 2016/11/28]
  • Shang Z, Lv H, Zhang M, et al. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer’s disease in Caribbean Hispanic individuals. Oncotarget. 2015;6(40):42504–42514. [published Online First: 2015/12/02]
  • Steeland S, Gorle N, Vandendriessche C, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med. 2018;10(4):e8300. [published Online First: 2018/02/24]
  • Xu M, Zhang DF, Luo R, et al. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer’s disease. Alzheimer’s & Dementia. 2018;14(2):215–229. [published Online First: 2017/09/20]
  • Kajiwara Y, Wang E, Wang M, et al. GJA1 (connexin43) is a key regulator of Alzheimer’s disease pathogenesis. Acta Neuropathol Commun. 2018;6(1):144. [published Online First: 2018/12/24]
  • Zhu X, Raina AK, Rottkamp CA, et al. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem. 2001;76(2):435–441.
  • Yao Z, Yang W, Gao Z, et al. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–140.
  • Arrazola MS, Silva-Alvarez C, Inestrosa NC. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front Cell Neurosci. 2015;9:166. [published Online First: 2015/05/23]
  • Tapia-Rojas C, Inestrosa NC. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer’s disease in J20-APP transgenic and wild-type mice. J Neurochem. 2018;144(4):443–465. [published Online First: 2017/12/15]
  • Tapia-Rojas C, Inestrosa NC. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer’s disease. Neural Regen Res. 2018;13(10):1705–1710. [published Online First: 2018/08/24]
  • Watterson DM, Grum-Tokars VL, Roy SM, et al. Development of novel in vivo chemical probes to address CNS protein kinase involvement in synaptic dysfunction. PloS One. 2013;8(6):e66226. [published Online First: 2013/07/11]
  • Lee JK, Kim NJ. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules (Basel, Switzerland). 2017;22(8):1287. [published Online First: 2017/08/03]
  • Zhou Y, Wang ZF, Li W, et al. Protective effects of microRNA-330 on amyloid beta-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J Cell Biochem. 2018;119(7):5437–5448. [published Online First: 2018/01/26]
  • Sotgia F, Fiorillo M, Lisanti MP. Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: early detection of treatment failure with companion diagnostics. Oncotarget. 2017;8(40):68730–68745.
  • Sanchez-Bermudez AI, Sarabia-Meseguer MD, Garcia-Aliaga A, et al. Mutational analysis of RAD51C and RAD51D genes in hereditary breast and ovarian cancer families from Murcia (southeastern Spain). Eur J Med Genet. 2018;61(6):355–361. [published Online First: 2018/02/08]
  • Sato K, Koyasu M, Nomura S, et al. Mutation status of RAD51C, PALB2 and BRIP1 in 100 Japanese familial breast cancer cases without BRCA1 and BRCA2 mutations. Cancer Sci. 2017;108(11):2287–2294. [published Online First: 2017/08/11]
  • Sahasrabudhe R, Lott P, Bohorquez M, et al. Germline mutations in PALB2, BRCA1, and RAD51C, which regulate DNA recombination repair, in patients with gastric cancer. Gastroenterology. 2017;152(5):983–986 e6. [published Online First: 2016/12/28]
  • Chen X, Qian D, Cheng J, et al. High expression of Rad51c predicts poor prognostic outcome and induces cell resistance to cisplatin and radiation in non-small cell lung cancer. Tumor Biol. 2016;37(10):13489–13498. [published Online First: 2016/07/29]
  • Oesterreich S. Scaffold attachment factors SAFB1 and SAFB2: innocent bystanders or critical players in breast tumorigenesis? J Cell Biochem. 2003;90(4):653–661. [published Online First: 2003/10/31]
  • Peidis P, Voukkalis N, Aggelidou E, et al. SAFB1 interacts with and suppresses the transcriptional activity of p53. FEBS Lett. 2011;585(1):78–84.
  • Hammerich-Hille S, Kaipparettu BA, Tsimelzon A, et al. SAFB1 mediates repression of immune regulators and apoptotic genes in breast cancer cells. J Biol Chem. 2010;285(6):3608–3616.
  • Lu A, Wangpu X, Han D, et al. TXNDC9 expression in colorectal cancer cells and its influence on colorectal cancer prognosis. Cancer Invest. 2012;30(10):721–726. [published Online First: 2012/12/06]
  • Wang Y, Jiang M, Yao Y, et al. WWC3 inhibits glioma cell proliferation through suppressing the Wnt/beta-catenin signaling pathway. DNA Cell Biol. 2018;37(1):31–37. [published Online First: 2017/11/09]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.