129
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Associations of ATG7 rs1375206 polymorphism and elevated plasma ATG7 levels with late-onset sporadic Parkinson’s disease in a cohort of Han Chinese from southern China

, , , , &
Pages 1206-1214 | Received 14 Feb 2019, Accepted 09 Feb 2020, Published online: 24 Feb 2020

References

  • Friedman LG, Lachenmayer ML, Wang J, et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci. 2012;32(22):7585–7593.
  • Hung KC, Huang HJ, Lin MW, et al. Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and alpha-synuclein aggregation. PLoS One. 2014;9(3):e91074.
  • Lee HJ, Cho ED, Lee KW, et al. Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein. Exp Mol Med. 2013;45:e22.
  • Li J, Li S, Zhang L, et al. Deconvoluting the complexity of autophagy and Parkinson’s disease for potential therapeutic purpose. Oncotarget. 2015;6(38):40480–40495.
  • Zhang H, Duan C, Yang H. Defective autophagy in Parkinson’s disease: lessons from genetics. Mol Neurobiol. 2015;51(1):89–104.
  • Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 1997;12(1):25–31.
  • Spencer B, Potkar R, Trejo M, et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci. 2009;29(43):13578–13588.
  • Chen L, Xie Z, Turkson S, et al. A53T human alpha-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci. 2015;35(3):890–905.
  • Metzger S, Walter C, Riess O, et al. The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients. PLoS One. 2013;8(7):e68951.
  • Nakamura K, Nemani VM, Azarbal F, et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem. 2011;286(23):20710–20726.
  • Ouyang L, Zhang L, Liu B. Autophagy pathways and key drug targets in Parkinson’s disease. Yao Xue Xue Bao. 2016;51(1):9–17.
  • Tanik SA, Schultheiss CE, Volpicelli-Daley LA, et al. Lewy body-like alpha-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem. 2013;288(21):15194–15210.
  • Niu XY, Huang HJ, Zhang JB, et al. Deletion of autophagy-related gene 7 in dopaminergic neurons prevents their loss induced by MPTP. Neuroscience. 2016;339:22–31.
  • Vuppalapati KK, Bouderlique T, Newton PT, et al. Targeted deletion of autophagy genes Atg5 or Atg7 in the chondrocytes promotes caspase-dependent cell death and leads to mild growth retardation. J Bone Miner Res. 2015;30(12):2249–2261.
  • Xie C, Ginet V, Sun Y, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12(2):410–423.
  • Lachenmayer ML, Yue Z. Genetic animal models for evaluating the role of autophagy in etiopathogenesis of Parkinson disease. Autophagy. 2012;8(12):1837–1838.
  • Lee HJ, Suk JE, Patrick C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285(12):9262–9272.
  • Fowler AJ, Moussa CE. Activating autophagy as a therapeutic strategy for Parkinson’s disease. CNS Drugs. 2018;32(1):1–11.
  • Metzger S, Saukko M, Van Che H, et al. Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet. 2010;128(4):453–459.
  • Pham DL, Kim SH, Losol P, et al. Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma. Korean J Intern Med. 2016;31(2):375–385.
  • Han B, Wang L, Fu F, et al. Hydroxysafflor yellow A promotes alpha-synuclein clearance via regulating autophagy in rotenone-induced Parkinson’s disease mice. Folia Neuropathol. 2018;56(2):133–140.
  • Chen D, Pang S, Feng X, et al. Genetic analysis of the ATG7 gene promoter in sporadic Parkinson’s disease. Neurosci Lett. 2013;534:193–198.
  • Jankovic J, Parkinson Study Group, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I, et al. Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology. 1990;40(10):1529–1534.
  • Huertas I, Jesus S, Lojo JA, et al. Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson’s disease subtype. PLoS ONE. 2017;12(3):e0174644.
  • Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–98.
  • Chen X, Xiao Y, Wei L, et al. Association of DNMT3b gene variants with sporadic Parkinson’s disease in a Chinese Han population. J Gene Med. 2017;19(11):360–365.
  • Zhao X, Chen Y, Chen X, et al. The analysis of correlation between single nucleotide polymorphism at Atg7 rs14016 and Parkinson’s disease. Chin J Geriatrics. 2017;36(12):1293–1297. (in Chinese).
  • Zhao X, Chen Y, Chen X, et al. Correlation between late-onset sporadic Parkinson’s disease and single nucleotide polymorphism of Atg7 rs2606757. Chin J Geriatrics. 2019;38(1):1305–1309. (in Chinese).
  • He P, Zhao X, Chen Y, et al. Association of single nucleotide polymorphisms of autophagy-related genes Atg7 site rs11706903 and Parkinson’s disease. Zhongguo Kangfu Lilun Yu Shijian. 2017;23(11):1313–1316. (in Chinese).
  • Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650–665.
  • Wang Z, Tao L, Xue Y, et al. Association of ATG7 polymorphisms and clear cell renal cell carcinoma risk. CMM. 2019;19(1):40–47.
  • Yamaguchi M, Satoo K, Suzuki H, et al. Atg7 activates an autophagy-essential ubiquitin-like protein Atg8 through multi-Step recognition. J Mol Biol. 2018;430(3):249–257.
  • Han B, Zhao H. Effects of hydroxysafflor yellow A in the attenuation of MPTP neurotoxicity in mice. Neurochem Res. 2010;35(1):107–113.
  • Zanetti KA, Haznadar M, Welsh JA, et al. 3’-UTR and functional secretor haplotypes in mannose-binding lectin 2 are associated with increased colon cancer risk in African Americans. Cancer Res. 2012;72(6):1467–1477.
  • Malec-Litwinowicz M, Plewka A, Plewka D, et al. The relation between plasma alpha-synuclein level and clinical symptoms or signs of Parkinson’s disease. Neurol Neurochir Polska. 2018;52(2):243–251.
  • Li Y, Zeng Z, Zhao J, et al. Association between polymorphisms in the flanking region of the TAFI gene and atherosclerotic cerebral infarction in a Chinese population. Lipids Health Dis. 2014;13(1):80.
  • Braga CA, Follmer C, Palhano FL, et al. The anti-Parkinsonian drug selegiline delays the nucleation phase of α-synuclein aggregation leading to the formation of nontoxic species. J Mol Biol. 2011;405(1):254–273.
  • Guo JF, He S, Kang JF, et al. Involvement of Bcl-2-associated athanogene (BAG)-family proteins in the neuroprotection by rasagiline. Int J Clin Exp Med. 2015;8(10):18158–18164.
  • Le W, Pan T, Huang M, et al. Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci. 2008;273(1-2):29–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.