185
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Establishing molecular signatures of stroke focusing on omic approaches: a narrative review

, &
Pages 1250-1266 | Received 06 Jan 2019, Accepted 09 Feb 2020, Published online: 27 Feb 2020

References

  • Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–255.
  • Thrift AG, Thayabaranathan T, Howard G, et al. Global stroke statistics. Int J Stroke. 2017;12(1):13–32.
  • Gao X, Yang H, ZhiPing T. Association studies of genetic polymorphism, environmental factors and their interaction in ischemic stroke. Neurosci Lett. 2006;398(3):172–177.
  • Sakakibara BM, Kim AJ, Eng JJ. A systematic review and meta-analysis on self-management for improving risk factor control in stroke patients. Int J Behav Med. 2017;24(1):42–53.
  • Markus HS. Stroke genetics. Human Mol Genet. 2011;20(R2):R124–R131.
  • Black M, Wang W, Wang W. Ischemic stroke: from next generation sequencing and GWAS to community genomics? Omics. 2015;19(8):451–460.
  • Munshi A, Rajeshwar K, Kaul S, et al. VNTR polymorphism in intron 4 of the eNOS gene and the risk of ischemic stroke in a South Indian population. Brain Res Bull. 2010;82(5-6):247–250.
  • Munshi A, Sharma V, Kaul S, et al. Estrogen receptor α genetic variants and the risk of stroke in a South Indian population from Andhra Pradesh. Clin Chim Acta. 2010;411(21-22):1817–1821.
  • Zee RY, Cheng S, Hegener HH, et al. Genetic variants of arachidonate 5-lipoxygenase–activating protein, and risk of incident myocardial infarction and ischemic stroke: a nested case-control approach. Stroke. 2006;37(8):2007–2011.
  • Bevan S, Dichgans M, Gschwendtner A, et al. Variation in the PDE4D gene and ischemic stroke risk: a systematic review and meta-analysis on 5200 cases and 6600 controls. Stroke. 2008;39(7):1966–1971.
  • Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci. 2009;106(23):9362–9367.
  • Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012;11(11):951–962.
  • Malik R, MEGASTROKE Consortium, Chauhan G, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524–537.
  • Bellenguez C, The International Stroke Genetics Consortium (ISGC), Bevan S, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012;44(3):328–333.
  • Matarín M, Brown WM, Scholz S, et al. A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurol. 2007;6(5):414–420.
  • Hata J, Matsuda K, Ninomiya T, et al. Functional SNP in an Sp1-binding site of AGTRL1 gene is associated with susceptibility to brain infarction. Human Mol Genet. 2007;16(6):630–639.
  • Gretarsdottir S, Thorleifsson G, Manolescu A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008;64(4):402–409.
  • Matsushita T, Ashikawa K, Yonemoto K, et al. Functional SNP of ARHGEF10 confers risk of atherothrombotic stroke. Human Mol Genet. 2010;19(6):1137–1146.
  • Yamada Y, Fuku N, Tanaka M, et al. Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genome-wide association study. Atherosclerosis. 2009;207(1):144–149.
  • Biffi A, on behalf of the International Stroke Genetics Consortium, Sonni A, et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol. 2010;68(6):934–943.
  • Network NS, Pulit SL, McArdle PF, et al. The NINDS Stroke Genetics Network: a genome-wide association study of ischemic stroke and its subtypes. Lancet Neurol. 2016;15(2):174.
  • Curtin SJ, Tiffin P, Guhlin J, et al. Validating genome-wide association candidates through quantitative variation in nodulation. Plant Physiol. 2017;173:01923.
  • Lanktree MB, Dichgans M, Hegele RA. Advances in genomic analysis of stroke: what have we learned and where are we headed? Stroke. 2010;41(4):825–832.
  • Bevan S, Markus HS. Genetics of common polygenic ischaemic stroke: current understanding and future challenges. Stroke Res Treat. 2011;2011:1–6.
  • Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–425.
  • Manry J, Quintana-Murci L. A genome-wide perspective of human diversity and its implications in infectious disease. Cold Spring Harbor Pers Med. 2013;3(1):a012450–a012450.
  • Polychronopoulos P, Gioldasis G, Ellul J, et al. Family history of stroke in stroke types and subtypes. J Neurol Sci. 2002;195(2):117–122.
  • Jerrard-Dunne P, Cloud G, Hassan A, et al. Evaluating the genetic component of ischemic stroke subtypes: a family history study. Stroke. 2003;34(6):1364–1369.
  • Yamada Y, Sakuma J, Takeuchi I, et al. Identification of six polymorphisms as novel susceptibility loci for ischemic or hemorrhagic stroke by exome-wide association studies. Int J Mol Med. 2017;39(6):1477–1491.
  • Oguri M, Kato K, Fujimaki T, et al. Identification of six polymorphisms as novel susceptibility loci for ischemic or hemorrhagic stroke by exome-wide association studies. Int J Mol Med. 2017;39(6):1477–1491.
  • Cole JW, Stine OC, Liu X, et al. Rare variants in ischemic stroke: an exome pilot study. PLoS One. 2012;7(4):e35591.
  • Kim DS, Crosslin DR, Auer PL, et al. Rare coding variation in paraoxonase-1 is associated with ischemic stroke in the NHLBI Exome Sequencing Project. J Lipid Res. 2014;55(6):1173–1178.
  • Zhang Y, Tong Y, Zhang Y, et al. Two novel susceptibility SNPs for ischemic stroke using exome sequencing in Chinese Han population. Mol Neurobiol. 2014;49(2):852–862.
  • Auer PL, Nalls M, Meschia JF, et al. Rare and coding region genetic variants associated with risk of ischemic stroke: the NHLBI Exome Sequence Project. JAMA Neurol. 2015;72(7):781–788.
  • Söderholm M, Almgren P, Jood K, et al. Exome array analysis of ischaemic stroke: results from a southern Swedish study. Eur J Neurol. 2016;23(12):1722–1728.
  • Malik R, International Stroke Genetics Consortium, Dau T, et al. Common coding variant in SERPINA1 increases the risk for large artery stroke. Proc Natl Acad Sci USA. 2017;114(14):3613–3618.
  • Flanagan JM, Sheehan V, Linder H, et al. Genetic mapping and exome sequencing identify two mutations associated with stroke protection in pediatric patients with sickle cell anemia. Blood, American Society of Hematology 2013;121(16):3237–3245.
  • Vasudeva K, Chaurasia P, Singh S, et al. Genetic signatures in ischemic stroke: focus on aspirin resistance. CNS Neurol Disord-Drug Targ. 2017;16(9):974–982.
  • Musunuru K, Ingelsson E, Fornage M, et al. The expressed genome in cardiovascular diseases and stroke: refinement, diagnosis, and prediction: a scientific statement from the American Heart Association. Circ: Genomic Precis Med. 2017;10(4):e000037.
  • Sharp FR, Jickling GC, Stamova B, et al. Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. J Cereb Blood Flow Metab. 2011;31(7):1513–1531.
  • Silverman WA. A cautionary tale about supplemental oxygen: the albatross of neonatal medicine. Pediatrics. 2004;113(2):394–396.
  • Choi JK, Kim SC. Environmental effects on gene expression phenotype have regional biases in the human genome. Genetics. 2007;175(4):1607–1613.
  • Richards AL, Watza D, Findley A, Alazizi A, et al. Environmental perturbations lead to extensive directional shifts in RNA processing. PLoS Genet. 2017;13(10):e1006995.
  • White RJ, Sharrocks AD. Coordinated control of the gene expression machinery. Trends Genet. 2010;26(5):214–220.
  • Tang Y, Lu A, Aronow BJ, et al. Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: blood genomic fingerprints of disease. Ann Neurol. 2001;50(6):699–707.
  • Tang Y, Lu A, Aronow BJ, et al. Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur J Neurosci. 2002;15(12):1937–1952.
  • Tang Y, Nee AC, Lu A, et al. Blood genomic expression profile for neuronal injury. J Cereb Blood Flow Metab. 2003;23(3):310–319.
  • Lu XC, Williams AJ, Yao C, et al. Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion. J Neurosci Res. 2004;77(6):843–857.
  • Moore DF, Li H, Jeffries N, et al. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation. 2005;111(2):212–221.
  • Tang Y, Gilbert DL, Glauser TA, et al. Blood gene expression profiling of neurologic diseases: a pilot microarray study. Arch Neurol. 2005;62(2):210–215.
  • Vemuganti R, Dempsey RJ. Carotid atherosclerotic plaques from symptomatic stroke patients share the molecular fingerprints to develop in a neoplastic fashion: a microarray analysis study. Neuroscience. 2005;131(2):359–374.
  • Tang Y, Xu H, Du XL, et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab. 2006;26(8):1089–1102.
  • Stamova B, Xu H, Jickling G, et al. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke. 2010;41(10):2171–2177.
  • Du X, Tang Y, Xu H, et al. Genomic profiles for human peripheral blood T cells, B cells, natural killer cells, monocytes, and polymorphonuclear cells: comparisons to ischemic stroke, migraine, and Tourette syndrome. Genomics. 2006;87(6):693–703.
  • Grond-Ginsbach C, Hummel M, Wiest T, et al. Gene expression in human peripheral blood mononuclear cells upon acute ischemic stroke. J Neurol. 2008;255(5):723–731.
  • Tischkau SA, Cohen JA, Stark JT, et al. Time-of-day affects expression of hippocampal markers for ischemic damage induced by global ischemia. Exp Neurol. 2007; 208(2):314–322.
  • Xu H, Tang Y, Liu DZ, et al. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke. J Cereb Blood Flow Metab. 2008;28(7):1320–1328.
  • Jickling GC, Xu H, Stamova B, et al. Signatures of cardioembolic and large‐vessel ischemic stroke. Ann Neurol. 2010;68(5):681–692.
  • Jickling GC, Stamova B, Ander BP, et al. Profiles of lacunar and nonlacunar stroke. Ann Neurol. 2011;70(3):477–485.
  • Stamova B, Jickling GC, Ander BP, et al. Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic. PLoS One. 2014;9(7):e102550.
  • Jickling GC, Stamova B, Ander BP, et al. Prediction of cardioembolic, arterial, and lacunar causes of cryptogenic stroke by gene expression and infarct location. Stroke. 2012;43(8):2036–2041.
  • Barr TL, Conley Y, Ding J, et al. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology. 2010;75(11):1009–1014.
  • Montaner J, Alvarez-Sabín J, Molina C, et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001;32(8):1759–1766.
  • Horstmann S, Kalb P, Koziol J, et al. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke. 2003;34(9):2165–2170.
  • Graves PR, Haystead TA. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66(1):39–63.
  • Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196.
  • Santana NR, Muñiz EZ, Cocho D, et al. Analysis of peptidome profiling of serum from patients with early onset symptoms of ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(2):235–240.
  • Crowley, M G, Grant Liska M, Lippert T, et al. Utilizing delta opioid receptors and peptides for cytoprotection: implications in stroke and other neurological disorders. CNS Neurol Disord-Drug Targ. 2017;16(4):414–424.
  • Fassbender K, Schmidt R, Schreiner A, et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci. 1997;148(1):101–105.
  • Allard L, Burkhard PR, Lescuyer P, et al. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin Chem. 2005;51(11):2043–2051.
  • Tamam Y, Iltumur K, Apak I. Assessment of acute phase proteins in acute ischemic stroke. Tohoku J Exp Med. 2005;206(2):91–98.
  • Barber M, Morton JJ, Macfarlane PW, et al. Elevated troponin levels are associated with sympathoadrenal activation in acute ischaemic stroke. Cerebrovasc Dis. 2007;23(4):260–266.
  • Cuadrado E, Rosell A, Colomé N, et al. The proteome of human brain after ischemic stroke. J Neuropathol Exp Neurol. 2010;69(11):1105–1115.
  • Bergerat A, Decano J, Wu CJ, et al. Prestroke proteomic changes in cerebral microvessels in stroke-prone, transgenic [hCETP]-Hyperlipidemic, Dahl salt-sensitive hypertensive rats. Mol Med. 2011;17(7-8):588–598.
  • Datta A, Akatsu H, Heese K, et al. Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteomics. 2013;91:556–568.
  • Lind L, Siegbahn A, Lindahl B, et al. Discovery of new risk markers for ischemic stroke using a novel targeted proteomics chip. Stroke. 2015;46(12):3340–3347.
  • Walsh KB, Hart K, Roll S, et al. Apolipoprotein AI and paraoxonase-1 are potential blood biomarkers for ischemic stroke diagnosis. J Stroke Cerebrovasc Dis. 2016;25(6):1360–1365.
  • Cevik O, Baykal AT, Sener A. Platelets proteomic profiles of acute ischemic stroke patients. PLoS One. 2016;11(6):e0158287.
  • Nguyen VA, Carey LM, Giummarra L, et al. A pathway proteomic profile of ischemic stroke survivors reveals innate immune dysfunction in association with mild symptoms of depression–a pilot study. Front Neurol. 2016;7:85.
  • Muñoz R, Santamaría E, Rubio I, et al. Mass spectrometry-based proteomic profiling of thrombotic material obtained by endovascular thrombectomy in patients with ischemic stroke. IJMS. 2018;19(2):498.
  • Penn AM, on behalf of the SpecTRA study group, Bibok MB, et al. Verification of a proteomic biomarker panel to diagnose minor stroke and transient ischaemic attack: phase 1 of SpecTRA, a large scale translational study. Biomarkers. 2018;23(4):392–405.
  • Lee Y, Khan A, Hong S, et al. A metabolomic study on high-risk stroke patients determines low levels of serum lysine metabolites: a retrospective cohort study. Mol BioSyst. 2017;13(6):1109–1120.
  • Holmes MV, Millwood IY, Kartsonaki C, et al. Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol. 2018;71(6):620–632.
  • Jung JY, Lee HS, Kang DG, et al. 1H-NMR-based metabolomics study of cerebral infarction. Stroke. 2011;42(5):1282–1288.
  • Jove M, Mauri-Capdevila G, Suarez I, et al. Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology. 2015;84(1):36–45.
  • Zhang W, Zhang XA. A novel urinary metabolite signature for non-invasive post-stroke depression diagnosis. Cell Biochem Biophys. 2015;72(3):661–667.
  • Deng W, Beecher C, Burant C, et al. Metabolomic analysis reveals novel small molecules plasma markers of hyperacute ischemic stroke (S30.001). Neurology. 2015;84(14):S30.001.
  • Yu B, Gottesman RF, Mosley TH, et al. Abstract TMP60: a prospective study of serum metabolites and risk of ischemic stroke. Stroke. 2017;48(suppl_1):ATMP60.
  • Wang Y, Wang Y-G, Ma T-F, et al. Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by 1H NMR-based metabolomics contributes to potential biomarkers. Int J Clin Exp Path. 2014;7(7):4067–4075.
  • Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007;313(10):2050–2062.
  • Tang JD, Lampe KJ. From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomed Mater. 2018;13(3):034103.
  • Yulug B, Hanoglu L, Kilic E. Commentary: toward a personalized medicine in wake-up stroke? CNS Neurol Disord-Drug Targ. 2017;16(10):1049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.