625
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

The effect of chronic neuropeptide-S treatment on non-motor parameters in experimental model of Parkinson’s disease

, , , , , & show all
Pages 765-774 | Received 03 Jan 2020, Accepted 28 Mar 2020, Published online: 22 May 2020

References

  • Mann DM, Yates PO. Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Dev. 1983;21(2):193–203.
  • Gautier CA, Corti O, Brice A. Mitochondrial dysfunctions in Parkinson’s disease. Rev Neurol (Paris). 2014;170(5):339–343.
  • Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol. 2014;49(1):28–38.
  • Beppe GJ, Dongmo AB, Foyet HS, et al. Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. BMC Complement Altern Med. 2014;14(1):142.
  • Caballol N, Marti MJ, Tolosa E. Cognitive dysfunction and dementia in Parkinson disease. Mov Disord. 2007;22(S17):S358–S66.
  • Tadaiesky MT, Dombrowski PA, Figueiredo CP, et al. Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience. 2008;156(4):830–840.
  • Chaudhuri KR, Healy DG, Schapira AH, et al. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5(3):235–245.
  • Taylor TN, Greene JG, Miller GW. Behavioral phenotyping of mouse models of Parkinson’s disease. Behav Brain Res. 2010;211(1):1–10.
  • Xu Y-L, Reinscheid RK, Huitron-Resendiz S, et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 2004;43(4):487–497.
  • Reinscheid RK, Xu YL. Neuropeptide S as a novel arousal promoting peptide transmitter. Febs J. 2005;272(22):5689–5693.
  • Xu Y-L, Gall CM, Jackson VR, et al. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol. 2007;500(1):84–102.
  • Didonet JJ, Cavalcante JC, Souza LS, et al. Neuropeptide S counteracts 6-OHDA-induced motor deficits in mice. Behav Brain Res. 2014;266:29–36.
  • Si W, Aluisio L, Okamura N, et al. Neuropeptide S stimulates dopaminergic neurotransmission in the medial prefrontal cortex. J Neurochem. 2010;115(2):475–482.
  • Ramos SF, Mendonça BP, Leffa DD, et al. Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice. Pharmacol Biochem Behav. 2012;103(2):197–203.
  • Donner J, Haapakoski R, Ezer S, et al. Assessment of the neuropeptide S system in anxiety disorders. Biol Psychiatry. 2010;68(5):474–483.
  • Lukas M, Neumann ID. Nasal application of neuropeptide S reduces anxiety and prolongs memory in rats: social versus non-social effects. Neuropharmacology. 2012;62(1):398–405.
  • Thomasson J, Canini F, Poly-Thomasson B, et al. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. Eur Neuropsychopharmacol. 2017;27(12):1308–1318.
  • Vitale G, Filaferro M, Ruggieri V, et al. Anxiolytic-like effect of neuropeptide S in the rat defensive burying. Peptides. 2008;29(12):2286–2291.
  • Beiderbeck DI, Lukas M, Neumann ID. Anti-aggressive effects of neuropeptide S independent of anxiolysis in male rats. Front Behav Neurosci. 2014;8:185.
  • Ahnaou A, Drinkenburg WH. Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats. Neuropsychobiology. 2012;65(4):195–205.
  • Zhao P, Shao YF, Zhang M, et al. Neuropeptide S promotes wakefulness through activation of the posterior hypothalamic histaminergic and orexinergic neurons. Neuroscience. 2012;207:218–226.
  • Han R-W, Yin X-Q, Chang M, et al. Neuropeptide S facilitates spatial memory and mitigates spatial memory impairment induced by N-methyl-D-aspartate receptor antagonist in mice. Neurosci Lett. 2009;455(1):74–77.
  • Yildirim FB, Ozsoy O, Tanriover G, et al. Mechanism of the beneficial effect of melatonin in experimental Parkinson’s disease. Neurochem Int. 2014;79:1–11.
  • Hacioglu G, Seval-Celik Y, Tanriover G, et al. Docosahexaenoic acid provides protective mechanism in bilaterally MPTP-lesioned rat model of Parkinson’s disease. Folia Histochem Cytobiol. 2012;50(2):228–238.
  • Sunter D, Hewson AK, Dickson SL. Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett. 2003;353(1):1–4.
  • Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322–328.
  • Moorthi P, Premkumar P, Priyanka R, et al. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD. Neuroscience. 2015;301:90–105.
  • Coelho JE, Alves P, Canas PM, et al. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry. 2014;5:67
  • Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254.
  • Gonzalez RR, Fernández RF, Vidal JLM, et al. Development and validation of an ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J Neurosci Methods. 2011;198(2):187–194.
  • Dickson DW, Braak H, Duda JE, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 2009;8(12):1150–1157.
  • Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004;318(1):215–224.
  • Crabbe M, Van der Perren A, Weerasekera A, et al. Altered mGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson’s disease and levodopa-induced dyskinesia. Neurobiol Aging. 2018;61:82–92.
  • Kostrzewa RM, Jacobowitz DM. Pharmacological actions of 6-hydroxydopamine. Pharmacol. Rev. 1974;26(3):199–288.
  • Bagci E, Aydin E, Ungureanu E, et al. Anthriscus nemorosa essential oil inhalation prevents memory impairment, anxiety and depression in scopolamine-treated rats. Biomed Pharmacother. 2016;84:1313–1320.
  • Faggiani E, Naudet F, Janssen MLF, et al. Serotonergic neurons mediate the anxiolytic effect of l-DOPA: Neuronal correlates in the amygdala. Neurobiol Dis. 2018;110:20–28.
  • Costa C, Sgobio C, Siliquini S, et al. Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain. 2012;135(6):1884–1899.
  • Saint-Cyr JA, Taylor AE, Lang AE. Procedural learning and neostriatal dysfunction in man. Brain. 1988;111(4):941–959.
  • Gorisch J, Schwarting RK. Wistar rats with high versus low rearing activity differ in radial maze performance. Neurobiol Learn Mem. 2006;86(2):175–187.
  • Hritcu L, Ciobica A. Intranigral lipopolysaccharide administration induced behavioral deficits and oxidative stress damage in laboratory rats: relevance for Parkinson’s disease. Behav Brain Res. 2013;253:25–31.
  • More SV, Kumar H, Cho DY, et al. Toxin-induced experimental models of learning and memory impairment. Int J Mol Sci. 2016;17(9):1447.
  • Bulbul M, Sinen O, Özkan A, et al. Central neuropeptide-S treatment improves neurofunctions of 6-OHDA-induced Parkinsonian rats. Exp Neurol. 2019;317:78–86.
  • Sriraksa N, Wattanathorn J, Muchimapura S, et al. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med. 2012;2012:1–9.
  • Okamura N, Garau C, Duangdao DM, et al. Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacol. 2011;36(4):744–752.
  • Aarsland D, Marsh L, Schrag A. Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord. 2009;24(15):2175–2186.
  • Huot P. The pons and human affective processing–Implications for Parkinson’s disease. EBioMedicine. 2015;2(11):1592–1593.
  • Souza LC, Martynhak BJ, Bassani TB, et al. Agomelatine’s effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats. Physiol Behav. 2018;188:298–310.
  • Willner P, Towell A, Sampson D, et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl). 1987;93(3):358–364.
  • Santiago RM, Barbiero J, Gradowski RW, et al. Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hippocampal serotonin. Behav Brain Res. 2014;259:70–77.
  • Blandini F, Porter RH, Greenamyre JT. Glutamate and Parkinson’s disease. Mol Neurobiol. 1996;12(1):73–94.
  • Clark SD, Duangdao DM, Schulz S, et al. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol. 2011;519(10):1867–1893.
  • Leonard SK, Ring RH. Immunohistochemical localization of the neuropeptide S receptor in the rat central nervous system. Neuroscience. 2011;172:153–163.
  • Zhang X, Bai L, Zhang S, et al. Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson’s disease model in mice. Free Radic Biol Med. 2018;124:380–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.