688
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Rab11-mediated recycling endosome role in nervous system development and neurodegenerative diseases

, , , , , , , , , & ORCID Icon show all
Pages 1012-1018 | Received 27 Nov 2019, Accepted 11 Apr 2020, Published online: 06 May 2020

References

  • Zerial M, Mcbride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–117.
  • Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci. 2008;65(18):2801–2813.
  • Bhuin T, Roy JK. Rab11 in disease progression. Int J Mol Cell Med. 2015;4(1):1–8.
  • Chen W, Feng Y, Chen D, et al. Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. MBoC. 1998;9(11):3241–3257.
  • Kelly EE, Horgan CP, Mccaffrey MW. Rab11 proteins in health and disease. Biochem Soc Trans. 2012;40(6):1360–1367.
  • Cosker KE, Segal RA. Neuronal signaling through endocytosis. Cold Spring Harbor Perspect Biol. 2014;6(2):a020669.
  • Wilcke M, Johannes L, Galli T, et al. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol. 2000;151(6):1207–1220.
  • Villarroel-Campos D, Bronfman FC, Gonzalez-Billault C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton (Hoboken, NJ). 2016;73(9):498–507.
  • Li X, Difiglia M. The recycling endosome and its role in neurological disorders. Prog Neurobiol. 2012;97(2):127–141.
  • Eva R, Dassie E, Caswell PT, et al. Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. J Neurosci. 2010;30(35):11654–11669.
  • Franssen EH, Zhao RR, Koseki H, et al. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J Neurosci. 2015;35(21):8359–8375.
  • Ascano M, Richmond A, Borden P, et al. Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J Neurosci. 2009;29(37):11674–11685.
  • Matsuzaki F, Shirane M, Matsumoto M, et al. Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. MBoC. 2011;22(23):4602–4620.
  • Homma Y, Fukuda M. Rabin8 regulates neurite outgrowth in both GEF activity-dependent and -independent manners. MBoC. 2016;27(13):2107–2118.
  • Koseki H, Donega M, Lam BY, et al. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. eLife. 2017;6:e26956.
  • Eva R, Koseki H, Kanamarlapudi V, et al. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J Cell Sci. 2017;130(21):3663–3675.
  • Eva R, Crisp S, Marland JR, et al. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J Neurosci. 2012;32(30):10352–10364.
  • Park M, Salgado JM, Ostroff L, et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron. 2006;52(5):817–830.
  • Saraste J, Goud B. Functional symmetry of endomembranes. MBoC. 2007;18(4):1430–1436.
  • Cheung ZH, Chin WH, Chen Y, et al. Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol. 2007;5(4):e63.
  • Yan Q, Radeke MJ, Matheson CR, et al. Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol. 1997;378(1):135–157.
  • Lazo OM, Gonzalez A, Ascano M, et al. BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching. J Neurosci. 2013;33(14):6112–6122.
  • Huang SH, Wang J, Sui WH, et al. BDNF-dependent recycling facilitates TrkB translocation to postsynaptic density during LTP via a Rab11-dependent pathway. J Neurosci. 2013;33(21):9214–9230.
  • Yazaki Y, Hara Y, Tamaki H, et al. Endosomal localization of FIP3/Arfophilin-1 and its involvement in dendritic formation of mouse hippocampal neurons. Brain Res. 2014;1557:55–65.
  • Hu WY, He ZY, Yang LJ, et al. The Ca(2+) channel inhibitor 2-APB reverses beta-amyloid-induced LTP deficit in hippocampus by blocking BAX and caspase-3 hyperactivation. Br J Pharmacol. 2015;172(9):2273–2285.
  • Wang J, Lv X, Wu Y, et al. Postsynaptic RIM1 modulates synaptic function by facilitating membrane delivery of recycling NMDARs in hippocampal neurons. Nat Commun. 2018;9(1):2267.
  • Park M, Penick EC, Edwards JG, et al. Recycling endosomes supply AMPA receptors for LTP. Science (New York, NY). 2004;305(5692):1972–1975.
  • Moore FB, Baleja JD. Molecular remodeling mechanisms of the neural somatodendritic compartment. Biochim Biophys Acta. 2012;1823(10):1720–1730.
  • Fernandez-Monreal M, Brown TC, Royo M, et al. The balance between receptor recycling and trafficking toward lysosomes determines synaptic strength during long-term depression. J Neurosci. 2012;32(38):13200–13205.
  • Sui WH, Huang SH, Wang J, et al. Myosin Va mediates BDNF-induced postendocytic recycling of full-length TrkB and its translocation into dendritic spines. J Cell Sci. 2015;128(6):1108–1122.
  • Hou Q, Huang Y, Amato S, et al. Regulation of AMPA receptor localization in lipid rafts. Mol Cell Neurosci. 2008;38(2):213–223.
  • Brachet A, Norwood S, Brouwers JF, et al. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. J Cell Biol. 2015;208(6):791–806.
  • Barnat M, Le Friec J, Benstaali C, et al. Huntingtin-mediated multipolar-bipolar transition of newborn cortical neurons is critical for their postnatal neuronal morphology. Neuron. 2017;93(1):99–114.
  • Muto A, Arai K, Watanabe S. Rab11-FIP4 is predominantly expressed in neural tissues and involved in proliferation as well as in differentiation during zebrafish retinal development. Dev Biol. 2006;292(1):90–102.
  • Xiong B, Bayat V, Jaiswal M, et al. Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol. 2012; 10(12):e1001438.
  • Xi F, Xu RJ, Xu JH, et al. Calcium/calmodulin-dependent protein kinase II regulates mammalian axon growth by affecting F-actin length in growth cone. J Cell Physiol. 2019;234(12):23053–23065.
  • Takano T, Tomomura M, Yoshioka N, et al. LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J Neurosci. 2012;32(19):6587–6599.
  • Khatri N, Gilbert JP, Huo Y, et al. The Autism protein Ube3A/E6AP remodels neuronal dendritic arborization via caspase-dependent microtubule destabilization. J Neurosci. 2018;38(2):363–378.
  • Song M, Giza J, Proenca CC, et al. Slitrk5 mediates BDNF-dependent TrkB receptor trafficking and signaling. Dev Cell. 2015;33(6):690–702.
  • Todorova V, Blokland A. Mitochondria and synaptic plasticity in the mature and aging nervous system. Curr Neuropharmcol. 2016;15(1):166–173.
  • Elias S, Mcguire JR, Yu H, et al. Huntingtin is required for epithelial polarity through RAB11A-mediated apical trafficking of PAR3-aPKC. PLoS Biol. 2015;13(5):e1002142.
  • Kawauchi T, Sekine K, Shikanai M, et al. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron. 2010;67(4):588–602.
  • Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci. 2005;25(25):6016–6024.
  • Sung JY, Park SM, Lee CH, et al. Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix metalloproteinases. J Biol Chem. 2005;280(26):25216–25224.
  • Poehler AM, Xiang W, Spitzer P, et al. Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment. Autophagy. 2014;10(12):2171–2192.
  • Breda C, Nugent ML, Estranero JG, et al. Rab11 modulates alpha-synuclein-mediated defects in synaptic transmission and behaviour. Hum Mol Genet. 2015;24(4):1077–1091.
  • Inoshita T, Arano T, Hosaka Y, et al. Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum Mol Genet. 2017;26(15):2933–2948.
  • Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70.
  • Udayar V, Buggia-Prevot V, Guerreiro RL, et al. A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell Rep. 2013;5(6):1536–1551.
  • Woodruff G, Reyna SM, Dunlap M, et al. Defective transcytosis of APP and lipoproteins in human iPSC-derived neurons with familial Alzheimer’s disease mutations. Cell Rep. 2016;17(3):759–773.
  • Li J, Kanekiyo T, Shinohara M, et al. Differential regulation of amyloid-beta endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem. 2012;287(53):44593–44601.
  • Treusch S, Hamamichi S, Goodman JL, et al. Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science (New York, NY). 2011;334(6060):1241–1245.
  • Zhao Z, Sagare AP, Ma Q, et al. Central role for PICALM in amyloid-beta blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18(7):978–987.
  • Labbadia J, Morimoto RI. Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci. 2013;38(8):378–385.
  • Mccolgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25(1):24–34.
  • Akbergenova Y, Littleton JT. Pathogenic Huntington alters BMP signaling and synaptic growth through local disruptions of endosomal compartments. J Neurosci. 2017;37(12):3425–3439.
  • Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci. 2010;33(11):513–523.
  • Richards P, Didszun C, Campesan S, et al. Dendritic spine loss and neurodegeneration is rescued by Rab11 in models of Huntington’s disease. Cell Death Differ. 2011;18(2):191–200.
  • Steinert JR, Campesan S, Richards P, et al. Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington’s disease. Hum Mol Genet. 2012;21(13):2912–2922.
  • Li X, Sapp E, Chase K, et al. Disruption of Rab11 activity in a knock-in mouse model of Huntington’s disease. Neurobiol Dis. 2009;36(2):374–383.
  • Li X, Valencia A, Sapp E, et al. Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington’s disease. J Neurosci. 2010;30(13):4552–4561.
  • Tang CC, Feigin A, Ma Y, et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest. 2013;123(9):4076–4088.
  • Li X, Valencia A, Mcclory H, et al. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington’s disease mice. Biochem Biophys Res Commun. 2012;421(4):727–730.
  • Mcclory H, Williams D, Sapp E, et al. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice. Acta Neuropathol Commun. 2014;2(1):179. (
  • Farg MA, Sundaramoorthy V, Sultana JM, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23(13):3579–3595.
  • Sabatelli M, Marangi G, Conte A, et al. New ALS-related genes expand the spectrum paradigm of amyotrophic lateral sclerosis. Brain Pathol (Zurich, Switzerland). 2016;26(2):266–275.
  • Mitra J, Hegde PM, Hegde ML. Loss of endosomal recycling factor RAB11 coupled with complex regulation of MAPK/ERK/AKT signaling in postmortem spinal cord specimens of sporadic amyotrophic lateral sclerosis patients. Mol Brain. 2019;12(1):55.
  • Deshpande M, Feiger Z, Shilton AK, et al. Role of BMP receptor traffic in synaptic growth defects in an ALS model. MBoC. 2016;27(19):2898–2910.
  • Schwenk BM, Hartmann H, Serdaroglu A, et al. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. Embo J. 2016;35(21):2350–2370.
  • Osaka M, Ito D, Yagi T, et al. Evidence of a link between ubiquilin 2 and optineurin in amyotrophic lateral sclerosis. Hum Mol Genet. 2015;24(6):1617–1629.
  • Longatti A, Lamb CA, Razi M, et al. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol. 2012;197(5):659–675.
  • Stendel C, Roos A, Kleine H, et al. SH3TC2, a protein mutant in Charcot-Marie-Tooth neuropathy, links peripheral nerve myelination to endosomal recycling. Brain J Neurol. 2010;133(8):2462–2474.
  • Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. IJMS. 2017;18(3):551.
  • Wilson RS, Segawa E, Boyle PA, et al. The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging. 2012;27(4):1008–1017.
  • Barker WW, Luis CA, Kashuba A, et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord. 2002;16(4):203–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.