95
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Montelukast, a cysteinyl leukotriene receptor antagonist, exerts local antinociception in animal model of pain through the L-arginine/nitric oxide/cyclic GMP/KATP channel pathway and PPARγ receptors

, , &
Pages 1004-1011 | Received 12 Jan 2020, Accepted 17 Apr 2020, Published online: 22 May 2020

References

  • Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects. Pain Physician. 2008;11:105–120.
  • Bäck M, Dahlén SE, Drazen JM, et al. International union of basic and clinical pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev. 2011;63(3):539–584.
  • O’Donnell SR. Leukotrienes: biosynthesis and mechanisms of action. Aust Prescr. 1999;22(3):55–57.
  • Jain NK, Kulkarni SK, Singh A. Role of cysteinyl leukotrienes in nociceptive and inflammatory conditions in experimental animals. Eur J Pharmacol. 2001;423(1):85–92.
  • Ghorbanzadeh B, Mansouri MT, Sahraei H, et al. Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain. Eur J Pharmacol. 2016;779:38–45.
  • Weisberg SC. Pharmacotherapy of asthma in children with special reference to leukotriene receptor antagonists. Pediatr Pulmonol. 2000;29(1):46–61.
  • Mamedova L, Capra V, Accomazzo MR, et al. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol. 2005;71(1–2):115–125.
  • Wu Y, Zhou C, Tao J, et al. Montelukast prevents the decrease of interleukin-10 and inhibits NF-kappa B activation in inflammatory airway of asthmatic guinea pigs. Can J Physiol Pharmacol. 2006;84(5):531–537.
  • Fermor B, Haribabu B, Weinberg JB, et al. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochem Biophys Res Commun. 2001;285(3):806–810.
  • Lärfars G, Lantoine F, Devynck MA, et al. Activation of nitric oxide release and oxidative metabolism by leukotrienes B4, C4, and D4 in human polymorphonuclear leukocytes. Blood. 1999;93(4):1399–1405.
  • Sandrini A, Ferreira IM, Gutierrez C, et al. Effect of montelukast on exhaled nitric oxide and nonvolatile markers of inflammation in mild asthma. Chest. 2003;124(4):1334–1340.
  • Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu Rev Neurosci. 1994;17:153–183.
  • Luo ZD, Cizkova E. The role of nitric oxide in nociception. Curr Rev Pain. 2000;4(6):459–466.
  • Jeong SY, Ha TS, Park CS, et al. Nitric oxide directly activates large conductance Ca2+-activated K + channels (rSlo). Mol Cells. 2001;2001:97–102.
  • Ocaña M, Cendán CM, Cobos EJ, et al. Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol. 2004;500(1–3):203–219.
  • Park SW, Yi JH, Miranpuri G, et al. Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther. 2007;320(3):1002–1012.
  • Mansouri MT, Naghizadeh B, Ghorbanzadeh B, et al. Systemic and local anti-nociceptive effects of simvastatin in the rat formalin assay: role of peroxisome proliferator-activated receptor γ and nitric oxide. J Neurosci Res. 2017;95(9):1776–1785.
  • Mansouri MT, Naghizadeh B, Ghorbanzadeh B, et al. Pharmacological evidence for systemic and peripheral antinociceptive activities of pioglitazone in the rat formalin test: role of PPARγ and nitric oxide. Eur J Pharmacol. 2017;805:84–92.
  • Ghorbanzadeh B, Kheirandish V, Mansouri MT. Involvement of the L-arginine/nitric oxide/cyclic GMP/KATP channel pathway and PPARγ receptors in the peripheral antinociceptive effect of carbamazepine. Drug Res (Stuttg). 2019;69(12):650–657.
  • Adrian TE, Hennig R, Friess H, et al. The role of PPARgamma receptors and leukotriene B(4) receptors in mediating the effects of LY293111 in pancreatic cancer. PPAR Res. 2008;2008:827096
  • Ghorbanzadeh b, Mansouri MT, Naghizadeh B, et al. Local antinociceptive action of fluoxetine in the rat formalin assay: role of l-arginine/nitric oxide/cGMP/KATP channel pathway. Can J Physiol Pharmacol. 2018;96(2):165–172.
  • Ghorbanzadeh B, Mansouri MT, Hemmati AA, et al. Involvement of L-arginine/NO/cGMP/K(ATP) channel pathway in the peripheral antinociceptive actions of ellagic acid in the rat formalin test. Pharmacol Biochem Behav. 2014;126:116–121.
  • Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;4(2):161–174.
  • Mansouri MT, Naghizadeh B, Ghorbanzadeh B, et al. Venlafaxine prevents morphine antinociceptive tolerance: the role of neuroinflammation and the l-arginine-nitric oxide pathway. Exp Neurol. 2018;303:134–141.
  • Ortiz MI, Medina-Tato DA, Sarmiento-Heredia D, et al. Possible activation of the NO-cyclic GMP-protein kinase G-K + channels pathway by gabapentin on the formalin test. Pharmacol Biochem Behav. 2006;83(3):420–427.
  • Alves DP, Soares AC, Francischi JN, et al. Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K + channels, and sodium nitroprusside and dibutyryl-cGMP. Eur J Pharmacol. 2004;489(1–2):59–65.
  • Tjolsen A, Berge OG, Hunskaar S, et al. The formalin test: an evaluation of the method. Pain. 1992;51:5–17.
  • Cury Y, Picolo G, Gutierrez VP, et al. Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011;25(3):243–254.
  • Nieto-Fernandez FE, Mattocks D, Cavani F, et al. Morphine coupling to invertebrate immunocyte nitric oxide release is dependent on intracellular calcium transients. Comp Biochem Physiol B Biochem Mol Biol. 1999;123(3):295–299.
  • Cunha FQ, Teixeira MM, Ferreira SH. Pharmacological modulation of secondary mediator systems-cyclic AMP and cyclic GMP-on inflammatory hyperalgesia. Br J Pharmacol. 1999;127(3):671–678.
  • Rodrigues AR, Duarte ID. The peripheral antinociceptive effect induced by morphine is associated with ATP-sensitive K(+) channels. Br J Pharmacol. 2000;129(1):110–114.
  • Mansouri MT, Naghizadeh B, Ghorbanzadeh B, et al. Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain. Eur J Pharmacol. 2013;707(1–3):46–53.
  • Brito GAC, Sachs D, Cunha FQ, et al. Peripheral antinociceptive effect of pertussis toxin: activation of the arginine/NO/cGMP/PKG/ ATP-sensitive K channel pathway. Eur J Neurosci. 2006;24(4):1175–1181.
  • Khanna N, Malhotra RS, Mehta AK, et al. Interaction of morphine and potassium channel openers on experimental models of pain in mice. Fundament Clin Pharmacol. 2011;25(4):479–484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.