90
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Photoperiod regulates the daily profiles of tryptophan hydroxylase-2 gene expression the raphe nuclei of rats

& ORCID Icon
Pages 1155-1161 | Received 25 Feb 2020, Accepted 26 May 2020, Published online: 25 Jun 2020

References

  • Morin LP. Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med. 1999;31(1):12–33.
  • Yannielli PC, Brewer JM, Harrington ME. Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies. Eur J Neurosci. 2004;19(4):891–897.
  • Meyer-Bernstein EL, Morin LP. Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci. 1996;16(6):2097–2111.
  • Hay-Schmidt A, Vrang N, Larsen PJ, et al. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat. 2003;25(4):293–310.
  • Barassin S, Raison S, Saboureau M, et al. Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. Eur J Neurosci. 2002;15(5):833–840.
  • Malek ZS, Pevet P, Raison S. Circadian change in tryptophan hydroxylase protein levels within the rat intergeniculate leaflets and raphe nuclei. Neuroscience. 2004;125(3):749–758.
  • Malek ZS, Dardente H, Pevet P, et al. Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles. Eur J Neurosci. 2005;22(4):895–901.
  • Malek ZS, Sage D, Pevet P, et al. Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology. 2007; 148(11):5165–5172.
  • Glass JD, Randolph WW, Ferreira SA, et al. Diurnal variation in 5-hydroxyindole-acetic acid output in the suprachiasmatic region of the Siberian hamster assessed by in vivo microdialysis: evidence for nocturnal activation of serotonin release. Neuroendocrinology. 1992;56(4):582–590.
  • Dudley TE, DiNardo LA, Glass JD. Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurosci. 1998;18(13):5045–5052.
  • Groaaman GH, Farnbauch L, Glass JD. Regulation of serotonin release in the Syrian hamster intergeniculate leaflet region. Neuroreport. 2004;15(1):103–106.
  • Mrugala M, Zlomanczuk P, Jagota A, et al. Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod. Am J Physiol Regul Integr Comp Physiol. 2000;278(4):R987–R994.
  • Vanderleest HT, Houben T, Michel S, et al. Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol. 2007;17(5):468–473.
  • Sumová A, Trávnícková Z, Peters R, et al. The rat suprachiasmatic nucleus is a clock for all seasons. Proc Natl Acad Sci USA. 1995;92(17):7754–7758.
  • Tournier BB, Menet JS, Dardente H, et al. Photoperiod differentially regulates clock genes’ expression in the suprachiasmatic nucleus of Syrian hamster. Neuroscience. 2003;118(2):317–322.
  • Johnston JD, Ebling FJ, Hazlerigg DG. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus). Eur J Neurosci. 2005;21(11):2967–2974.
  • Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 2003;55(2):325–395.
  • Illnerová H, Hoffman K, Vanĕck J. Adjustment of the rat pineal N-acetyltransferase rhythm to change from long to short photoperiod depends on the direction of the extension of the dark period. Brain Res. 1986;362(2):403–408.
  • Ribelayga C, Garidou ML, Malan A, et al. Photoperiodic control of the rat pineal arylalkylamine-N-acetyltransferase and hydroxyindole-O-methyltransferase gene expression and its effect on melatonin synthesis. J Biol Rhythms. 1999;14(2):105–115.
  • Oster H, Challet E, Ott V, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017;38(1):3–45.
  • Bering T, Hertz H, Rath MF. Rhythmic release of corticosterone induces circadian clock gene expression in the cerebellum. Neuroendocrinology. 2019. DOI:https://doi.org/10.1159/000503720
  • Ahlersova E, Ahlers I, Smajda B. Influence of light regimen and time of year on circadian oscillations of insulin and corticosterone in rats. Physiol Res. 1992;41(4):307–314.
  • Azmitia EC, Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol. 1978;179(3):641–667.
  • Shen H, Semba K. A direct retinal projection to the dorsal raphe nucleus in the rat. Brain Res. 1994;635(1–2):159–168.
  • Fite KV, Janu?Onis S, Foote W, et al. Retinal afferents to the dorsal raphe nucleus in rats and Mongolian gerbils. J Comp Neurol. 1999;414(4):469–484.
  • Pinato L, Ferreira ZS, Markus RP, et al. Bimodal daily variation in the serotonin content in the raphe nuclei of rats. Biol Rhythm Res. 2004;35(3):245–257.
  • Messager S, Ross AW, Barrett P, et al. Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc Natl Acad Sci USA. 1999;96(17):9938–9943.
  • Dardente H, Menet JS, Poirel VJ, Streicher D, et al. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Brain Res Mol Brain Res. 2003;114(2):101–106.
  • Johnston JD1, Tournier BB, Andersson H, et al. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology. 2006;147(2):959–965.
  • Wagner GC, Johnston JD, Tournier BB, et al. Melatonin induces gene-specific effects on rhythmic mRNA expression in the pars tuberalis of the Siberian hamster (Phodopus sungorus). Eur J Neurosci. 2007;25(2):485–490.
  • Masson-Pévet M, George D, Kalsbeek A, et al. An attempt to correlate brain areas containing melatonin-binding sites with rhythmic functions: a study in five hibernator species. Cell Tissue Res. 1994;278(1):97–106.
  • Recio J, Pévet P, Vivien-Roels B, et al. Daily and photoperiodic melatonin binding changes in the suprachiasmatic nuclei, paraventricular thalamic nuclei, and pars tuberalis of the female Siberian hamster (Phodopus sungorus). J Biol Rhythms. 1996;11(4):325–332.
  • Miguez JM, Martin FJ, Lema M, et al. Changes in serotonin level and turnover in discrete hypothalamic nuclei after pinealectomy and melatonin administration to rats. Neurochem Int. 1996;29(6):651–658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.