227
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

CB2R induces a protective response against epileptic seizures through ERK and p38 signaling pathways

, &
Pages 735-744 | Received 13 Aug 2019, Accepted 01 Jul 2020, Published online: 27 Jul 2020

References

  • Murin Y, Kim J, Parvizi J, et al. SozRank: a new approach for localizing the epileptic seizure onset zone. PLoS Comput Biol. 2018;14(1):e1005953.
  • Gao F, Gao Y, Meng F, et al. The Sphingosine 1-phosphate analogue fty720 alleviates seizure-induced overexpression of P-glycoprotein in rat hippocampus. Bas Clin Pharmacol Toxicol. 2018;123(1):14–20.
  • Richter Z, Janszky J, Sétáló G, Jr, et al. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy. Neuroscience. 2016;333:140–150.
  • Woodbury DM. Neurotransmitters and epilepsy: distinguishing characteristics and unifying precepts. Fed Proc. 1984;43(10):2529–2531.
  • Werner FM, Covenas R. Review: classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: how to improve the antiepileptic effect? Epilepsy Behav. 2017;71(Pt B):124–129.
  • Ievglevskyi O, Isaev D, Netsyk O, et al. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy. Phil Trans R Soc B. 2016;371(1700):20150431.
  • Sørensen AT, Ledri M, Melis M, et al. Altered chloride homeostasis decreases the action potential threshold and increases hyperexcitability in hippocampal neurons. eNeuro. 2017;4(6).
  • Tailby C, Kowalczyk MA, Jackson GD. Cognitive impairment in epilepsy: the role of reduced network flexibility. Ann Clin Transl Neurol. 2018;5(1):29–40.
  • Afawi Z, Oliver KL, Kivity S, et al. Multiplex families with epilepsy: success of clinical and molecular genetic characterization. Neurology. 2016;86(8):713–722.
  • Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2015;6(2):a022699.
  • Goodwin SW, Ferro MA, Speechley KN. Development and assessment of the quality of life in childhood epilepsy questionnaire (QOLCE-16). Epilepsia. 2018;59(3):668–678.
  • Kim H, Thurman DJ, Durgin T, et al. Estimating epilepsy incidence and prevalence in the US pediatric population using nationwide health insurance claims data. J Child Neurol. 2016;31(6):743–749.
  • Liang S, Zhang J, Zhang S, et al. Epilepsy in adults with supratentorial glioblastoma: incidence and influence factors and prophylaxis in 184 patients. PLoS One. 2016;11(7):e0158206.
  • Lai C, Guo S, Cheng L, et al. A comparative study of feature selection methods for the discriminative analysis of temporal lobe epilepsy. Front Neurol. 2017;8:633.
  • Zhang C, Yang H, Qin W, et al. Characteristics of resting-state functional connectivity in intractable unilateral temporal lobe epilepsy patients with impaired executive control function. Front Hum Neurosci. 2017;11:609.
  • Sun Y, Shen X, Li Q, et al. Child with cerebral malformations and epilepsy. Int J Neurosci. 2018;26:1–18.
  • Deopa B, Parakh M, Dara P, et al. Effect of folic acid supplementation on seizure control in epileptic children receiving long term antiepileptic therapy. Indian J Pediatr. 2018; 85(7):493–497.
  • Myers KA, McGlade A, Neubauer BA, et al. KANSL1 variation is not a major contributing factor in self-limited focal epilepsy syndromes of childhood. PLoS One. 2018;13(1):e0191546.
  • Abrams DI. The therapeutic effects of Cannabis and cannabinoids: an update from the National Academies of Sciences, Engineering and Medicine report. Eur J Intern Med. 2018;49:7–11.
  • Neale M. Efficacy and safety of cannabis for treating children with refractory epilepsy. Nurs Child Young People. 2017;29(7):32–37.
  • De Caro C, Leo A, Citraro R, et al. The potential role of cannabinoids in epilepsy treatment. Expert Rev Neurother. 2017;17(11):1069–1079.
  • Lupica CR, Hu Y, Devinsky O, et al. Cannabinoids as hippocampal network administrators. Neuropharmacology. 2017; 124:25–37.
  • Sulak D, Saneto R, Goldstein B. The current status of artisanal cannabis for the treatment of epilepsy in the United States. Epilepsy Behav. 2017; 70(Pt B):328–333.
  • Devane WA, Dysarz FA, 3rd, Johnson MR, et al. Determination and characterization of cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34(5):605–613.
  • Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561–564.
  • Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–65.
  • Cakil D, Yildirim M, Ayyildiz M, et al. The effect of co-administration of the NMDA blocker with agonist and antagonist of CB1-receptor on penicillin-induced epileptiform activity in rats. Epilepsy Res. 2011;93(2–3):128–137.
  • Devinsky O, Cilio MR, Cross H, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55(6):791–802.
  • Pearl PL. Epilepsy syndromes in childhood. Continuum (Minneap Minn). 2018;24(1, Child Neurology):186–209.
  • Amengual-Gual M, Sánchez Fernández I, Loddenkemper T. Patterns of epileptic seizure occurrence. Brain Res. 2019;1703:3–12.
  • Yang H, Zhang C, Liu C, et al. Brain network alteration in patients with temporal lobe epilepsy with cognitive impairment . Epilepsy Behav. 2018;81:41–48.
  • Rizzo V, Carletti F, Gambino G, et al. Role of CB2 receptors and cGMP pathway on the cannabinoid-dependent antiepileptic effects in an in vivo model of partial epilepsy. Epilepsy Res. 2014;108(10):1711–1718.
  • Rowley S, Sun X, Lima IV, et al. Cannabinoid receptor 1/2 double-knockout mice develop epilepsy. Epilepsia. 2017;58(12):e162–e166.
  • Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32(3):281–294.
  • Morris TA, Jafari N, DeLorenzo RJ. Chronic DeltaFosB expression and increased AP-1 transcription factor binding are associated with the long term plasticity changes in epilepsy. Brain Res Mol Brain Res. 2000;79(1–2):138–149.
  • Wallace MJ, Wiley JL, Martin BR, et al. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol. 2001;428(1):51–57.
  • Oyrer J, Maljevic S, Scheffer IE, et al. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev. 2018;70(1):142–173.
  • Aronica E, Mühlebner A. Neuropathology of epilepsy. Handb Clin Neurol. 2017;145:193–216.
  • O'Connell BK, Gloss D, Devinsky O. Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav. 2017;70(PtB):341–348.
  • Vaughan CW, Christie MJ. Retrograde signalling by endocannabinoids. Handb Exp Pharmacol. 2005;168:367–383.
  • Chen KA, Farrar MA, Cardamone M, et al. Cannabis for paediatric epilepsy: challenges and conundrums. Med J Aust. 2018;208(3):132–136.
  • Chen JW, Wang PF, Zhang MZ, et al. Relationship between expression changes of CB2R and wound age of brain contusion in mice. Fa Yi Xue Za Zhi. 2019;35(2):136–142.
  • Cao Q, Liu X, Yang F, et al. CB2R induces a protective response for epileptic seizure via the PI3K 110α-AKT signaling pathway. Exp Ther Med. 2018;16(6):4784–4790.
  • Navarrete F, García-Gutiérrez MS, Aracil-Fernández A, et al. Cannabinoid CB1 and CB2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with Parkinson's disease. Neurotherapeutics. 2018;15(2):459–469.
  • Basavarajappa BS, Shivakumar M, Joshi V, et al. Endocannabinoid system in neurodegenerative disorders. J Neurochem. 2017;142(5):624–648.
  • Jordan CJ, Xi ZX. Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci Biobehav Rev. 2019;98:208–220.
  • Wu Q, Wang H. The spatiotemporal expression changes of CB2R in the hippocampus of rats following pilocarpine-induced status epilepticus. Epilepsy Res. 2018;148:8–16.
  • Wang L, Song L-F, Chen X-Y, et al. MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther. 2019;25(1):112–122.
  • Huang Q, Liu X, Wu Y, et al. P38 MAPK pathway mediates cognitive damage in pentylenetetrazole-induced epilepsy via apoptosis cascade. Epilepsy Res. 2017;133:89–92.
  • Shao Y, Wang C, Hong Z, et al. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats. J Neurochem. 2016;136(5):1096–1105.
  • Chávez CE, Oyarzún JE, Avendaño BC, et al. The opening of connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-exposed adult offspring. Front Cell Neurosci. 2019;13:460..
  • Zhu X, Chen Y, Du Y, et al. Astragaloside IV attenuates penicillin-induced epilepsy via inhibiting activation of the MAPK signaling pathway. Mol Med Rep. 2018;17(1):643–647.
  • Salman MM, Sheilabi MA, Bhattacharyya D, et al. Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy. Eur J Neurosci. 2017;46(5):2121–2132.
  • Zhu H, Xu H, Ma H, et al. LncRNA CASC2 inhibits astrocytic activation and adenosine metabolism by regulating PTEN in pentylenetetrazol-induced epilepsy model. J Chem Neuroanat. 2020;105.
  • Kinboshi M, Mukai T, Nagao Y, et al. Inhibition of inwardly rectifying potassium (Kir) 4.1 channels facilitates brain-derived neurotrophic factor (BDNF) expression in astrocytes. Front Mol Neurosci. 2017;10:408.
  • Piao C, Ralay Ranaivo H, Rusie A, et al. Thrombin decreases expression of the glutamate transporter GLAST and inhibits glutamate uptake in primary cortical astrocytes via the rho kinase pathway. Exp Neurol. 2015;273:288–300.
  • Yang JJ, Li WH, Liu BJ, et al. Influence of pentylenetetrazol and NF-κB decoy oligodeoxynucleotides on p38 expression in neuron-like cells. Exp Ther Med. 2014;8(2):395–400.
  • Shematorova EK, Shpakovski DG, Chernysheva AD, et al. Molecular mechanisms of the juvenile form of Batten disease: important role of MAPK signaling pathways (ERK1/ERK2, JNK and p38) in pathogenesis of the malady. Biol Direct. 2018;13(1):19.
  • Liao ET, Lin YW, Huang CP, et al. Electric stimulation of ear reduces the effect of toll-like receptor 4 signaling pathway on kainic acid-induced epileptic seizures in rats. Biomed Res Int. 2018;2018:5407256.
  • Kim JE, Choi HC, Song HK, et al. Blockade of AMPA receptor regulates mitochondrial dynamics by modulating ERK1/2 and PP1/PP2A-mediated DRP1-S616 phosphorylations in the normal rat hippocampus. Front Cell Neurosci. 2019;13(13):179.
  • Lösing P, Niturad CE, Harrer M, et al. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Mol Brain. 2017;10(1):30.
  • Giordano C, Costa AM, Lucchi C, et al. Progressive seizure aggravation in the repeated 6-Hz corneal stimulation model is accompanied by marked increase in hippocampal p-erk1/2 immunoreactivity in neurons. Front Cell Neurosci. 2016;10:281.
  • Li Y, Peng Z, Xiao B, et al. Activation of ERK by spontaneous seizures in neural progenitors of the dentate gyrus in a mouse model of epilepsy. Exp Neurol. 2010;224(1):133–145.
  • Zhang W, Liu J, Hu X, et al. n-3 Polyunsaturated fatty acids reduce neonatal hypoxic/ischemic brain injury by promoting phosphatidylserine formation and Akt signaling . Stroke. 2015;46(10):2943–2950.
  • Yue P, Gao L, Wang X, et al. Intranasal administration of GDNF protects against neural apoptosis in a rat model of Parkinson's disease through PI3K/Akt/GSK3β pathway . Neurochem Res. 2017;42(5):1366–1374.
  • Wei H, Duan G, He J, et al. Geniposide attenuates epilepsy symptoms in a mouse model through the PI3K/Akt/GSK-3β signaling pathway. Exp Ther Med. 2017;15:1136–1142.
  • Yang W, Li J, Shang Y, et al. HMGB1-TLR4 axis plays a regulatory role in the pathogenesis of mesial temporal lobe epilepsy in immature rat model and children via the p38MAPK signaling pathway . Neurochem Res. 2017;42(4):1179–1190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.