188
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Clinical and molecular characterization of hereditary spastic paraplegia in a spanish Southern region

, , , , , , , & show all
Pages 767-777 | Received 08 Apr 2020, Accepted 05 Oct 2020, Published online: 03 Feb 2022

References

  • Fink JK. Hereditary spastic paraplegia: clinical principles and genetic advances. Semin Neurol. 2014;34(3):293–305.
  • Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–1155.
  • Finsterer J, Löscher W, Quasthoff S, et al. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012;318(1/2):1–18.
  • Salinas S, Proukakis C, Crosby A, et al. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol. 2008;7(12):1127–1138.
  • Ruano L, Melo C, Silva MC, et al. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–183.
  • Lynch DS, Koutsis G, Tucci A, et al. Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. Eur J Hum Genet. 2016;24(6):857–863.
  • Stevanin G, Azzedine H, Denora P, SPATAX consortium, et al. Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain. 2008;131(Pt 3):772–784. ;.
  • Soehn AS, Rattay TW, Beck-Wödl S, et al. Uniparental disomy of chromosome 16 unmasks recessive mutations of FA2H/SPG35 in 4 families. Neurology. 2016; 87(2):186–191.
  • Yoon G, Baskin B, Tarnopolsky M, et al. Autosomal recessive hereditary spastic paraplegia-clinical and genetic characteristics of a well-defined cohort. Neurogenetics. 2013;14(3/4):181–188.
  • Wilkinson PA, Crosby AH, Turner C, et al. A clinical, genetic and biochemical study of SPG7 mutations in hereditary spastic paraplegia. Brain. 2004;127(Pt 5):973–980.
  • Brugman F, Scheffer H, Wokke JH, et al. Paraplegin mutations in sporadic adult-onset upper motor neuron syndromes. Neurology. 2008; 71(19):1500–1505.
  • Balicza P, Grosz Z, Gonzalez MA, et al. Genetic background of the hereditary spastic paraplegia phenotypes in Hungary – an analysis of 58 probands. J Neurol Sci. 2016;364:116–121.
  • Tessa A, Silvestri G, de Leva MF, Modoni A, et al. A novel KIF5A/SPG10 mutation in spastic paraplegia associated with axonal neuropathy . J Neurol. 2008;255(7):1090–1092.
  • Stevanin G, Santorelli FM, Azzedine H, et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007;39(3):366–372.
  • Słabicki M, Theis M, Krastev DB, et al. A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol. 2010;8(6):e1000408.
  • Schlipf NA, Schüle R, Klimpe S, et al. AP5Z1/SPG48 frequency in autosomal recessive and sporadic spastic paraplegia. Mol Genet Genomic Med. 2014;2(5):379–382.
  • Hourani R, El-Hajj T, Barada WH, et al. MR imaging findings in autosomal recessive hereditary spastic paraplegia. AJNR Am J Neuroradiol. 2009;30(5):936–940.
  • Khan TN, Klar J, Tariq M, et al. Evidence for autosomal recessive inheritance in SPG3A caused by homozygosity for a novel ATL1 missense mutation. Eur J Hum Genet. 2014;22(10):1180–1184.
  • Pensato V, Castellotti B, Gellera C, et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014;137(Pt 7):1907–1920.
  • Denora PS, Schlesinger D, Casali C, et al. Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion. Hum Mutat. 2009;30(3):E500–19.
  • Casari G, Marconi R. Spastic Paraplegia 7. 2006. Aug 24 [Updated 2018 Oct 25]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1107/.
  • Hirst J, Madeo M, Smets K, et al. Complicated spastic paraplegia in patients with AP5Z1 mutations (SPG48). Neurol Genet. 2016;2(5):e98.
  • Crimella C, Arnoldi A, Crippa F, et al. Point mutations and a large intragenic deletion in SPG11 in complicated spastic paraplegia without thin corpus callosum. J Med Genet. 2009;46(5):345–351.
  • Rubegni A, Storti E, Tessa A, et al. Federico Hereditary spastic paraplegia type 11 with a very late onset A, Santorelli FM. J Neurol. 2015;262(8):1987–1989.
  • Giannoccaro MP, Liguori R, Arnoldi A, et al. Atypical late-onset hereditary spastic paraplegia with thin corpus callosum due to novel compound heterozygous mutations in the SPG11 gene. J Neurol. 2014;261(9):1825–1827.
  • da Graça FF, de Rezende TJR, Vasconcellos LFR, et al. Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol. 2018;9:1117.16
  • Pascual B, de Bot ST, Daniels MR, et al. “Ears of the Lynx” MRI Sign Is Associated with SPG11 and SPG15 Hereditary Spastic Paraplegia. AJNR Am J Neuroradiol. 2019;40(1):199–203.
  • Ylikallio E, Kim D, Isohanni P, et al. Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur J Hum Genet. 2015;23(10):1427–1430.
  • Citterio A, Arnoldi A, Panzeri E, et al. Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis. J Neurol. 2015;262(12):2684–2690.
  • https://www.omim.org/entry/601255.
  • Riviere JB, Ramalingam S, Lavastre V, et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet. 2011;89(2):219–230.
  • Lee JR, Srour M, Kim D, et al. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum Mutat. 2015;36(1):69–78.
  • Esmaeeli Nieh S, Madou MR, Sirajuddin M, et al. De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy. Ann Clin Transl Neurol. 2015;2(6):623–635.
  • Ohba C, Haginoya K, Osaka H, et al. De novo KIF1A mutations cause intellectual deficit, cerebellar atrophy, lower limb spasticity and visual disturbance. J Hum Genet. 2015;60(12):739–742. 8.
  • Yoshikawa K, Kuwahara M, Saigoh K, et al. The novel de novo mutation of KIF1A gene as the cause for Spastic paraplegia 30 in a Japanese case. eNeurologicalSci. 2019;14:34–37.
  • Klebe S, Lossos A, Azzedine H, et al. KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations. Eur J Hum Genet. 2012;20(6):645–649.
  • Krenn M, Zulehner G, Hotzy C, et al. Hereditary spastic paraplegia caused by compound heterozygous mutations outside the motor domain of the KIF1A gene. Eur J Neurol. 2017;24(5):741–747.
  • Cheon CK, Lim SH, Kim YM, et al. Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Sci Rep. 2017;7(1):12527.
  • Pennings M, Schouten MI, van Gaalen J, Meijer RPP, et al. KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. Eur J Hum Genet. 2020; Jan28(1):40–49.
  • Hotchkiss L, et al. Novel d novo mutations in KIF1A as a cause of hereditary spastic paraplegia with progressive central nervous. J Child Neurol. 2016;31(9):1114–1119.
  • Fonknechten N, Mavel D, Byrne P, et al. Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet. 2000;9(4):637–644.
  • Parodi L, Fenu S, Barbier M, SPATAX network, et al. Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex. Brain. 2018;141(12):3331–3342.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.